

Drainage Strategy

Coleg Gwent

06 Dec. 24

5228425-ATK-XX-XX-T-C-900002

COLEG GWENT MASTERPLAN

AtkinsRéalis - Baseline / Référence

Notice

This document and its contents have been prepared and are intended solely as information for Coleg Gwent and use in relation to the masterplan planning issue.

AtkinsRéalis UK Limited assumes no responsibility to any other party in respect of or arising out of or in connection with this document and/or its contents.

This document has 27 pages including the cover.

Document history

Document title: Drainage Strategy

Document reference: 5228425-ATK-XX-XX-T-C-900002

Revision	Purpose description	Originated	Checked	Reviewed	Authorised	Date
P01	Planning application	SF	SH	CS	CS	06/12/24

Client signoff

Client	Coleg Gwent
Project	COLEG GWENT MASTERPLAN
Job number	5228425
Client signature/date	

2

Contents

1.	Introdu	uction	5
	1.1	Background	5
	1.2	Report Scope	5
	1.3	Proposed Development	5
2.	Flood	Risk Assessment	7
3.	Policy	Context	8
	3.1	Rainfall Return Periods	8
	3.2 3.2.1	Local Development Policies The Statutory Technical Standards for Sustainable Drainage Systems	8 9
	3.2.2	Climate Change	10
	3.2.3	Hydraulic Criteria	10
	3.2.4	Physical Criteria	10
4.	Existin	g Site Information	12
	4.1	Site Location	12
	4.2	Topography and Site Features	12
	4.3	Ground Investigations and Geology	13
	4.4 4.4.1	Water Environment Existing Water Features	13 13
	4.4.2	Existing Drainage Features	13
	4.5	Existing Surface Water Runoff	14
5.	Draina	ge Strategy	15
	5.1 5.1.1	Surface Water Drainage Proposals Runoff destination (Standard S1)	15 15
	5.1.Z	Surface water Runon Hydraulic Control (Standard 2)	15
	5.1.4	Amenity (Standard S4)	18
	5.1.5	Biodiversity (Standard S5)	18
	5.1.6	Design of Drainage for Construction and Maintenance and Structural Integrity (Standard 6)	19
6.	Foul W	/ater Drainage Proposals	20
	6.1	Design summary	20
	6.2	Capacity of receiving network	20
	6.3	Adoption	20
7.	Summ	ary	21
Appen	dix A.	Existing Flood Maps	23
Appen	dix B.	Existing Runoff Rate Calculations	24
Appen	dix C.	Storage Estimate Calculations	25

3

Appendix D.	Drainage Layout Plan

1. Introduction

AtkinsRéalis, on behalf of Coleg Gwent has prepared a drainage strategy, which incorporates a Surface Water Management Plan (SWMP) for the proposed development of Coleg Gwent Masterplan at Risca Road, Crosskeys. The strategy will focus on the disposal of surface water run-off and foul effluent, by detailing the planned use of the scheme and its anticipated impact on the site's existing drainage regime. It has been produced to be compliant with the Statutory National Standards for Sustainable Drainage Systems (SuDS) in Wales. This report will focus on Phases 2 to 4 of the masterplan, Phase 1 has been addressed in the 5228425-ATK-XX-XX-T-C-900001 Drainage Strategy document.

1.1 Background

AtkinsRéalis formed part of the consultant team to review the current Crosskeys campus performance in its entirety and formulate an operational Net Zero Carbon masterplan in line with the college vision. Key aspirations of the master planning included: improving current access, circulation, and landscape areas on campus, reviewing underperforming buildings and maintenance issues, and aligning with Welsh Government published guidance "Net Zero Carbon Status by 2030".

The masterplan was issued in 2023 and involves the phased development and refurbishment of the Crosskeys Campus. Phases 1-3 are planned for delivery (subject to funding approvals) over 9 years up to 2032, based upon space requirements, cost estimates and the phasing/decant strategy. Phases 4-6 are anticipated over 2 years each, taking the indicative completion of the masterplan to 2038.

The document "Crosskeys Campus, Coleg Gwent Net Zero Carbon Masterplan" should be referred to for further details on the overall phasing strategy plan.

1.2 Report Scope

The scope of this report is to provide a drainage strategy to support the planning application for Crosskeys Campus, Coleg Gwent Masterplan. This will be achieved by providing detail on how the surface water runoff and foul effluent will be managed in accordance with local and national guidance. Development of the strategy includes the following:

- Review of relevant local and national development guidance stated in Table 3-2.
- Review of pre-development topographical survey data.
- Review of factual ground investigation data.
- Undertake an assessment of pre-development surface water runoff rates.
- Identify existing drainage regime, systems and assets.
- Identify potential outfalls from the site for both foul effluent and surface water runoff.
- Calculate the additional foul load anticipated and identify the most appropriate discharge point.
- Consider future maintenance requirements.

1.3 Proposed Development

The proposal is to redevelop the existing site as described in section 1.1 to modernise the teaching facilities. As part of the hard and soft landscaping proposals there will be the introduction of SuDS features across the site which will provide betterment to the existing surface water regime. The works will be completed using a phased approach as shown in Figure 1-1.

Figure 1-1 - Extract from Stride Treglown drawing 155663-STL-XX-XX-DR-L-09000 Landscape Masterplan

2. Flood Risk Assessment

Coleg Gwent Campus is not located within a Flood Zone, therefore there is no requirement for a Flood Risk Assessment to be carried out. Figure 2-1 shows an extract from the Flood Zone Map from Natural Resource Wales. Refer to Appendix A to view the layout in full.

Figure 2-1 - Flood Zone Map Extract from Natural Resources Wales

Figure 2-2 shows that the site is not at risk from flooding from rivers or the sea. There are multiple areas at low to medium flood risk of surface water flooding located sporadically throughout the site. These are small and not considered a concern. Any surface water flood risks will be mitigated through the proposed surface water management plan (SWMP). Refer to Appendix A to view the layout in full.

Figure 2-2 - Flood Risk Map Extract from Natural Resource Wales

3. Policy Context

3.1 Rainfall Return Periods

Rainfall is a natural process that can present a range of different risks depending on its form. The Department for Environment, Food and Rural Affairs (DEFRA) define the risks presented by rainfall and associated flood risk according to an Annual Exceedance Probability (AEP), or as having a 'return period'.

Return period includes the statistical probability of an event occurring and the scale of the potential consequences. The 10-Year, 50-Year and the 100-Year return periods have a 10%, 2% and 1% chance of occurring in any given year, respectively. However, over a longer period the probability of flooding is considerably greater.

Table 3-1 below provides a summary of the relevant AEP and corresponding return period events of sensitivity.

AEP (%)	Return Period (Years)	
100%	1 in 1 Year	
10%	1 in 10 Years	
2%	1 in 50 Years	
3%	1 in 30 Years	
1%	1 in 100 Years	
0.5%	1 in 200 Years	
0.1%	1 in 1000 Years	

Table 3-1 - Definition of AEP and 'Return Period' Rainfall Events

3.2 Local Development Policies

The design of surface water drainage systems for all developments in Wales that are larger than 100 square metres must conform to Schedule 3 of the Flood and Water Management Act 2010. The development must seek approval from the SuDS Approval Body (SAB) before construction can commence. The SAB in this instance is Caerphilly County Council.

In addition, the design of all sewers and lateral drains must conform to BS EN 752, Building Regulations 2010 Part H, planning policy and best practice guidelines (such as Sewers for Adoption 7th Edition) wherever applicable.

In order to inform the strategy, a review has been undertaken of relevant local and national development policies as detailed in Table 3-2.

8

Table 3-2 - Local Development Policies and National Guidance to Inform the Report

Document Name	Published By	Date
Statutory Standards for Sustainable Drainage Systems - designing, constructing, operating and maintaining surface water drainage systems (SDSSW)	Welsh Government	2018

The key points extracted from the guidance pertinent to the proposed development are summarised in the following sections.

3.2.1 The Statutory Technical Standards for Sustainable Drainage Systems

The requirements are described in the Statutory Standards for Sustainable Drainage Systems for Wales, which also references the CIRIA SuDS Manual (C753).

There are criteria for prioritising the choice of destination for runoff, followed with standards which state the design criteria and how SuDS should be built, maintained, and operated.

A summary of the criteria is provided below:

Runoff Destination (Standard S1)

Surface water runoff destination priority levels:

- Level 1 Collected for use
- Level 2 Infiltrated to ground
- Level 3 Discharge to surface water body
- Level 4 Discharge to surface water sewer or drainage system
- Level 5 Discharge to combined sewer

Hydraulic Control (Standard S2)

A summary of standards and guidance on hydraulic criteria follows:

o Interception

Surface water should be managed to prevent, so far as possible, any discharge from the site for the majority of rainfall events of less than 5 mm. A suggested target is 80% compliance in summer and 50% compliance in winter.

Run-off rate control

For previously developed sites, runoff rates should be reduced to the greenfield rates wherever possible. Betterment of at least 30% should be considered as a minimum requirement for Brownfield sites.

o Run-off volume control

For previously developed sites, the surface water management system should be designed so the volume of runoff discharged for the 1 in 100 year, 6-hour event is as close to greenfield conditions as possible. Where volumes cannot be sufficiently reduced, they should be discharged at a rate of 2 l/s/ha, or the average annual peak flow (QBAR), whichever is greater.

• Flood protection

Protection against flooding for external areas should be ensured for events up to 1 in 30-year return period event. Protection against flooding of buildings should be ensured for events up to the 1 in 100-year return period event.

9

Water Quality (Standard S3)

Treatment of surface water runoff should be provided to prevent negative impacts on the receiving water quality. The simple index approach in the SuDS manual should be followed.

Amenity & Biodiversity (Standards S4 and S5)

The design of surface water management systems should maximise amenity and biodiversity benefits.

Construction, Operation and Maintenance, and Structural Integrity (Standard S6)

All elements of the surface water drainage system should be designed so that they can be constructed, maintained and operated easily, safely and cost-effectively. Structural integrity of all elements under anticipated loading conditions should be ensured.

3.2.2 Climate Change

Planning Policy Wales advises an uplift on rainfall intensities of 40% for climate change when designing for 2085 and beyond.

Planning policy requires all surface water drainage systems to be designed to retain runoff on the site up to a 1 in 100-year rainfall event, with an allowance for climate change.

3.2.3 Hydraulic Criteria

3.2.3.1 Surface Water

The minimum size of a gravity surface water sewer is to be 100 mm diameter. To provide a self-cleansing flow regime, the minimum velocity should be 1 m/s at pipe full flow.

The system should be designed so pipework is just full, not surcharged, in events up to and including a 1 in 2 year design storm.

The system should be designed not to flood the site in events up to and including a 1 in 30 year design storm. During events exceeding that threshold, consideration should be given to the flow paths of any water escaping from the system onto the site to ensure it is contained above ground temporarily.

To ensure sufficient treatment takes place in swales, the maximum velocity should be 0.3 m/s and the residence time should be at least 9 minutes in 1-year 15-minute rainfall events.

3.2.3.2 Foul Water

The minimum size of a gravity foul water lateral drain is to be 100 mm diameter, and the minimum size of a gravity foul water sewer is to be 150 mm diameter. To provide a self-cleansing flow regime, the minimum velocity should be 0.75 m/s at one third design flow.

3.2.4 Physical Criteria

Where possible, drainage systems outside of buildings will be designed with a minimum depth of cover as follows, or protected with concrete bedding and surround:

- 0.35 m in pathways without any possibility of vehicular access.
- 0.5 m in parking area with height restriction and max gross vehicle weight of 7.5 tonnes.

- 0.9 m in parking area with limited access for vehicles in excess of 7.5 tonnes, or public open spaces.
- 1.2 m in highways or unrestricted parking areas.

Sewers and lateral drains should be positioned such that the external face is:

- At least 1.2 m from a building or structure, or a distance equivalent to the depth of the sewer below the foundation, whichever is greater.
- At least 1 m from any kerb line.

The design of all drains must conform to BS EN 752, Building Regulations 2010 Part H, planning policy and best practice guidelines (such as Sewers for Adoption 7th Edition) wherever applicable. Sanitary systems within buildings should be designed in accordance with BS EN 12056-2.

4. Existing Site Information

4.1 Site Location

Coleg Gwent, Crosskeys Campus is located adjacent to Risca Road in the centre of Crosskeys, South Wales. Grid Ref: ST 22367 91680. The site is a brownfield site and home to the current college campus. The site, along with indicative boundary line, is shown in Figure 4-1.

Figure 4-1 - Location with Campus Boundary

4.2 **Topography and Site Features**

The site currently consists of several college buildings car parks and landscaped areas.

The site is relatively flat, with levels falling generally from Northwest to Southeast, varying from approximately 62.50mAOD to 59.29mAOD across Phases 2 to 4. The topography survey used for reference is "Coleg Gwent Crosskeys Campus Site Survey" carried out by John Vincent Surveys Ltd, however this was completed in 2007. A new topography survey has been commissioned to establish current site levels and features in detail, however this has not been received at the time of writing.

A GPR utility survey has been commissioned to determine underground services and has not been received at the time of writing. The impact of the survey results on drainage proposals cannot be determined until such survey is received and reviewed.

4.3 Ground Investigations and Geology

At time of writing, there is no Ground Investigation (GI) information to inform the drainage design. As a result, infiltration will not be considered viable as part of the surface water management plan. Infiltration potential will be assessed as soon as the relevant information becomes available.

4.4 Water Environment

4.4.1 Existing Water Features

The closest river to the site is the Ebbw River, approximately 350m to the south, measured from Risca Road, which equates to approximately 150m south of the site boundary.

4.4.2 Existing Drainage Features

This preliminary assessment is based on historic drainage survey information. The information contains cover levels, depths, and pipe sizes; however the information is incomplete and engineering assumptions have been made.

4.4.2.1 Surface Water

The existing area of the site is served by 100mm diameter surface water drains. The majority of the Surface Water (SW) network within Phase 2 and 3 connects Rainwater Pipes (RWPs) and road gullies from the site to the highway network in Risca Road to the north. The depths of this surface water network range from approximately 0.5m to 2.9m deep at the boundary with Risca Road. The SW network within the Phase 4 areas drain towards the south to the SW network in Waunfawr Park Rd. The depths of this network range from approximately 0.4m to 1.28m deep at the south end of the Phase 4 boundary.

4.4.2.2 Foul Drainage

The existing area of the site is served by 100mm diameter foul water drains. Approximately half of the site discharges to the Dwr Cymru Welsh Water (DCWW) combined sewer in Risca Road, and half to the DCWW foul network within Waunfawr Park Rd to the south. The depths of the FW network range from approximately 0.5m to 2.1m deep.

A CCTV and drainage survey scope will be issued. The results from the survey will be used to determine the levels, capacity, condition and connectivity for both surface water and foul water networks on site, and within Risca Road and Waunfawr Park Rd where the proposed discharge points are located. Drainage information resulting from these surveys will inform later design stages.

4.5 Existing Surface Water Runoff

The existing surface water runoff has been calculated using the modified rational method. The calculations can be found in Appendix B and are summarised in table 4-1.

Return Period	Phase 2 (2763m²) l/s	Phase 3 (2541m²) l/s	Phase 4 (7355m²) l/s
15min 2year	29.1	19.7	66.6
15min 30year	57.2	38.6	130.7
15min 100year	70.8	47.8	161.9

Table 4-1 - Discharge rates from the existing site

5. Drainage Strategy

5.1 Surface Water Drainage Proposals

This is a brownfield site; therefore the drainage proposal will require a minimum of 40% betterment on existing discharge rates.

5.1.1 Runoff destination (Standard S1)

The following runoff destinations have been considered:

Level 1	Collected for use	Assumed not to be appropriate in this instance due to the site use. The use of rainwater harvesting would need to be justified in conjunction with one of the below methods.
Level 2	Infiltrated to ground	Infiltration testing is yet to be carried out, therefore infiltration has been assumed to be not viable. Soakaway infiltration testing is advised as part of the ground investigation to determine infiltration potential.
Level 3	Discharge to surface water body	Not viable as the Ebbw River is not within reasonable distance and would involve crossing third party land, not within control of the client.
Level 4	Discharge to surface water sewer or drainage system	The proposal for each phase is to connect into existing on-site surface water sewer. For phases 2 and 3 discharge will be into the highway sewer in Risca Road, running along the Northern boundary of the site. For phase 4 the discharge will be into the highway sewer in Waunfawr Park Rd to the south.
Level 5	Discharge to combined sewer	N/A based on the above.

5.1.2 Surface Water Runoff Hydraulic Control (Standard 2)

5.1.2.1 Interception

Interception will need to be considered under the statutory standards. Interception aims to mimic greenfield runoff conditions by preventing runoff from the majority of all small rainfall events. This can contribute to reducing pollution load to receiving surface water bodies. Meeting the Interception criterion is not expected during particularly wet periods, when permeable surfaces and subsoils are saturated, so a suggested target is that 80% compliance should be achieved during the summer and 50% in winter. Refer to table G2.1 in the Statutory Standards for Sustainable

Drainage Systems 2018 document published by Welsh Government for details of interception mechanisms and their assumed compliance with the standards.

The SuDS systems in each phase will be sized appropriately to the size of the contributing area as specified in the Sustainable Drainage Systems Standards for Wales to ensure interception of the first 5 mm of runoff. Table 4-1 provides further detail on each feature type and the plan in appendix D provides indicative locations for features in each phase.

Interception method	Interception comments
Attenuation basins	To be fully compliant, contributing areas are to be no larger than five times the basin base area.
	The basin has been sized to achieve the 5:1 ratio.
Bioretention systems	To be fully compliant, contributing areas are to be no larger than five times the bioretention system surface area.
	Bioretention systems have been sized to achieve the 5:1 ratio.
Permeable paving	To be fully compliant, contributing areas are to be no larger than two times the bioretention system surface area.
	The permeable paving systems have been sized to achieve the 2:1 ratio.

Table 4-1 – Interception summary

5.1.2.2 Hydraulic Control

For the purposes of this section of the report, infiltration will not be accounted for as a means of disposing surface water runoff generated from the development, therefore the discharge volume for the site will not decrease.

As the site is brownfield in nature the statutory standards requires that the discharge rate for the site to be limited to provide a 40% betterment on the existing runoff as a minimum requirement. However, in order to provide further betterment, it is proposed to restrict the proposed discharge rates to the existing greenfield runoff rates (refer to table 5-1) which has been calculated using FEH rainfall data and the Wallingford website. The calculation output can be found in Appendix B.

Return Period	Phase 2 (I/s)	Phase 3 (I/s)	Phase 4 (I/s)
Q2	1.67	1.49	4.48
Q30	1.67	1.49	4.48
Q100	1.67	1.49	4.48

Table 5-1 – Proposed discharge rates by phase

For each phase the limited discharge will be controlled by a flow control chamber upstream of the discharge location into the existing surface water network with the proposed discharge rate being maintained for all storm events up to

and including a 1 in 100 year return period event with 40% allowance for climate change. Table 5-2 provides the levels of betterment achieve for each return period.

Return Period	Phase 2 I/s (%)	Phase 3 I/s (%)	Phase 4 I/s (%)
Q2	27.4 (94)	18.2 (92)	62.1 (93)
Q30	55.5 (97)	37.1 (96.1)	126.2 (97)
Q100	69.1 (98)	46.3 (96.9)	157.4 (97)

Table 5-2 - Proposed betterment by return period

5.1.2.3 Flood Risk and Storage

In accordance with statutory guidelines, the development of this site should not increase flood risk elsewhere and as such, all runoff from attenuated areas on site should be contained within the site boundary for up to and including a 1 in 100 year design period storm, plus 40% climate change and urban creep allowance. These allowances will have to be agreed with the SAB prior to detailed design. It is proposed to discharge surface water runoff from the developments via gravity to the highway sewer in Risca Road to the north, and Waunfawr Park Rd to the south, with runoff rates being restricted to those stated in Table 5-1 this will need to be agreed with the adopting SAB's authority and local authority's drainage department.

Storage will be required to attenuate flows above the restricted discharge rate. InfoDrainage modelling software will be used to make an estimate of storage requirements at each phase. SuDs features, such as attenuation basins, bioretention areas and permeable paving, will be sized appropriately to provide the required storage.

InfoDrainage has been used to make an estimate of the attenuation storage requirements for each phase. The estimated total volume of storage required for the 100-year return period event for each phase has been summarised in table 5-3 and a copy of the calculation outputs can be found in Appendix C.

Phase / Area	Estimated Storage requirement (m ³)
Phase 2	233 - 319
Phase 3	208 - 285
Phase 4	607 - 837

Table 5-3 - Storage Estimate per phase

Areas of the existing campus outside Phases 2 - 4 will remain unchanged; these areas will not be requiring SuDS design as the existing drainage will remain intact.

5.1.3 Water quality (Standard S3)

This standard requires treatment of surface water runoff to prevent negative impacts on the receiving water quality and/or protect downstream drainage systems including sewers. The only exception to this standard is where

drainage connects directly to a combined sewer, where the quality requirements are limited to preventing the discharge of oil and sediments to the sewer system.

The aim of the surface water management strategy with regards to water quality is to follow the guiding principles of the SDSSW and use simple, natural processes that promote biodiversity and long-term sustainability. As such, it employs a SuDS management train approach, providing drainage components in series.

The management trains to be used on the project will be assessed using the Simple Index Assessment (SIA) tool available publicly (http://www.ukSuDS.com/drainage-calculation-tools/water-quality-assessment-for-SuDS-developments) which is built around the principles for simple assessment outlined in CIRIA C753 to assess the levels of treatment provided by the proposals.

Planting within the SuDS features should form part of the water quality strategy. SuDS components like bio retention areas provide water quality improvements by reducing sediment and contaminants from runoff either through settlement or biological breakdown of pollutants as part of their interceptor function, so only robust and tolerant species of planting should be specified. Once these species establish this will decrease the flow rate of water travelling through and filter pollutants and contaminants before entering the downstream network.

5.1.4 Amenity (Standard S4)

The primary amenity focus of the SuDS scheme should be to improve the health and well-being of the users. The scheme will need to be based on natural forms that mimic natural landscapes found within the region and the vegetated bioretention planting areas are designed with locally contextual species that will encourage natural colonisation. Other key amenity benefits should include improving air quality around the development, increasing carbon sequestration and improving water quality through removal of pollutants via bioretention areas and the attenuation basins.

5.1.5 Biodiversity (Standard S5)

The SuDS scheme biodiversity strategy should revolve around the creation of significant and varied habitat to increase the overall biodiversity of the site and ecological value. The inclusion of plant species that will enhance the general eco system and simultaneously act as a water filtration system to clean pollutants and contaminants should be used where possible.

The plant species selected should be both locally contextual and appropriate for the varied habitat zones including primary characteristics that shall ensure:

- Good soil binding and filtration species
- Minimised erosion
- Improved filtration via dense root and stem species
- Tolerance to seasonal variations including droughts and inundations
- Good suspended-solids retention
- Pollutant tolerant
- Emergent and pioneering species for natural ecological colonisation
- Decreation of diverse, self-sustaining and resilient ecosystems for high species biodiversity
- Support for local and regional habitat strategies

In general, the proposed bioretention areas and attenuation basin will be the focal habitat for the site and will enhance the site over the current site layout by adding areas of water and damp soils. Exposed areas of rain

gardens will attract certain species and shaded areas under adjacent buildings and trees will further enhance the varied ecosystem potential.

5.1.6 Design of Drainage for Construction and Maintenance and Structural Integrity (Standard 6)

The surface water drainage system should be designed with the overriding ethos of simplicity in construction, use and maintenance. This then allows a very simple translation from the principles described within standard S6, namely that all elements of the surface water drainage system should be designed so that they can be constructed, as well as maintained and operated "...easily, safely, cost-effectively, in a timely manner, and with the aim of minimising the use of scarce resources and embedded carbon (energy)." (SDSSW).

The proposed system will be managed by the client as they will be the sole landowner and will be managing all the elements within the site boundary, therefore the client's maintenance team will be responsible for the maintenance of all elements of the system to ensure it continues to comply with SuDS standards.

Information with regards to the construction methodology and requirements of the proposed system will be developed as part of the detailed design stage of the project. Likewise, the maintenance requirements and regime of the proposed system will be developed into the full maintenance strategy for the site during the next phase of design development. This will be developed in conjunction with the client's maintenance team, as it is not considered appropriate for these details to be developed by the design team in isolation from the end users. This will then need to be confirmed and submitted for approval to the SAB prior to construction commencing on site.

6. Foul Water Drainage Proposals

6.1 Design summary

The proposed foul water strategy is to collect the flows from the buildings and discharge them via new connections into the existing on-site sewer system. It is proposed to route all below ground drainage in such a way as to avoid the location of the future phase buildings to ensure there are no clashes in the future.

Though there are several new buildings proposed for phases 2 to 4, the overall capacity of the college is not set to increase, so there will be minimal increase in flows into the existing DCWW system.

The existing pipework downstream of the connection point will need to be surveyed to confirm the level at the proposed new manhole location. A CCTV survey will also be required to establish the existing pipes condition and suitability for reuse by the new phase of works. These investigation works will need to be carried out during Stage 3 to inform the detailed design.

A Pre Planning Advice (PPA) will need to be submitted to DCWW at each phase of works to confirm the capacity within the existing system to accept the flows from the development.

All on site sewerage systems will be designed and constructed to comply with building regulations requirements with any adopted elements in accordance with the latest edition of "Sewers for Adoption" and any of the adopting authority's (DCWW) specific requirements.

6.2 Capacity of receiving network

The existing college is currently connected into the existing combined network which is owned by DCWW. A Pre Planning Advice (PPA) was submitted to DCWW for phase 1 of the works where they confirmed capacity was available within the existing system to accept the flows from the development. Given the length of time to deliver all the phases a (PPA) submission maybe required for each phase of the development to confirm the capacity within the public network – given the minimal changes in staff and student numbers over the phases we would envisage no capacity issues at the time of writing this report.

6.3 Adoption

It is necessary to apply to DCWW for any connection to the public sewer under Section 106 of the Water Industry Act 1991. If the connection to the public sewer network will be via a lateral drain extending beyond the property boundary, it is mandatory to first enter into a Section 104 Adoption Agreement (Water Industry Act 1991). It is not currently anticipated that a Section 104 will be required.

All on site sewerage systems will be designed and constructed to comply with building regulations requirements with any adopted elements in accordance with the latest edition of "Sewers for Adoption" and any of the adopting authority's (DCWW) specific requirements.

7. Summary

The aim of the surface water drainage strategy is to mimic the natural catchment processes as closely as possible. The proposed system will need to be designed in accordance with the statutory (SDSSW) document 2018 and any local authority's SAB requirements and CIRIA's C753 SuDS Manual as well as meeting the requirements of Building Regulations, Document H.

In determining a suitable methodology for disposal of surface water flows from this development, it is necessary to explore the technical options outlined under Standard S1 in the statutory (SDSSW) document 2018 published by the Welsh Government. Based on the hierarchy it is proposed to discharge surface water runoff from the development to the existing surface water sewer.

Surface water runoff is to be attenuated from site by phase, to the figures stated in Section 5. These run-off rates will then be maintained for all rainfall events up to and including a 100YRP with 40% allowance for climate change and urban creep. Given the proposed site layout, storage could be provided in the form of bioretention areas, permeable paving and attenuation basins. The main storage features for the site will be attenuation basins. All drainage features will be developed further at detailed design stage.

As the scheme is a education development it has been considered that the use of a grey water system would not be suitable due to there being periods of very low demand, which may result in legionella issues. However, other basic forms of rainwater harvesting could be incorporated into the development in the form of rainwater butts that will collect water from rainwater downpipes and store it for irrigation of the soft landscaped areas and planting beds, however these areas will be accepting runoff for the adjacent hard paved areas, the feasibility of this will be determined at later stages of design.

Amenity and biodiversity benefits to the site will be provided by incorporating bioretention areas. These will form part of the attenuation storage for the site along with the attenuation basins. Bioretention areas will maximise the available green infrastructure within the development, which will improve air quality and water quality of the site.

All on site surface water drainage systems will be designed and constructed to comply with the (SDSSW) and building regulations requirements. The detailed design of the scheme will incorporate the philosophies outlined in this report regarding standards S1-S6 listed in section 5 of this report.

The proposed foul drainage strategy is to collect the flows from the building and discharge them via a new connection into the existing on-site sewer system to avoid any offsite connections to the public sewer network. It is proposed to route all below ground drainage in such a way as to avoid the location of the future phase buildings to ensure there are no clashes in the future.

We would envisage no capacity issues at the time of writing this report based on the minimal changes in staff and student numbers over the phases however given the length of time to deliver all the phases a (PPA) submission maybe required for each phase of the development to confirm the capacity within the public network.

All on site sewerage systems will be designed and constructed to comply with building regulations requirements with any adopted elements in accordance with the latest edition of "Sewers for Adoption" and any of the adopting authority's (DCWW) specific requirements.

APPENDICES

Appendix A. Existing Flood Maps

	Cyfoeth Naturiol Cymru Natural Resources Wales
	Flood Risk Maps
	Coleg Gwent Flood Risk Map
	Legend
	Flood Risk from Rivers
	High
	Medium
	Low
	Flood Risk from the Sea
	High
	Medium
	Low Flood Risk from Surface Water & Small Watercourses
	High
	Medium
	low
	Risk Level Under Review
1 ST 1	
Nant Y Game	
Cromwell.Rd	
Raglan s	
1 - CH	
The second se	
1 martine	
1 13	
ight and database right 2020	Scale at A3: 1:5,000
1 1 .	Date: 26/03/2024
© NRW/CNC. Some information d UKCEH, the Environment Agency Limited, Defra, © Met Office and D Hutton Institute © Ordnance Surve	erived from © UK Centre for Ecology & Hydrology © © EA and Getmapping Plc and Bluesky International ARD Rivers Agency, © Cranfield University, © James av © Land & Property Services, All rights received
,	,, , , , , , , , , , , , , , , , , , ,

Flood Map for Planning - Basic Coleg Gwent Flood Zone

Legend

TAN15 Defended Zones

Rivers

Sea

Rivers and Sea

Flood Zone 3

Flood Zone 2

ght and database right 2020	Scale at A3: 1:5,000
	Date: 26/03/2024
© NRW/CNC. Some information of UKCEH, the Environment Agency Limited, Defra, © Met Office and D	lerived from © UK Centre for Ecology & Hydrology © © EA and Getmapping Plc and Bluesky International DARD Rivers Agency, © Cranfield University, © James
Hutton Institute, © Ordnance Surv	ey, © Land & Property Services. All rights reserved.

Appendix B. Existing Runoff Rate Calculations

ЛТІ	/		C					Pro	ojec	t: Co	oleg	g Gv	ven	t Ph	nase	e 2									Jo	b re	f: 5	228	425		
		N	3					Pro	opos	sed	Dev	velo	pm Me	ent	Site	;								Calc s	shee	et no	D of			re	יע יע
								Dr	awir		f	Jilai	IVIC	uno	u	Ca	lc h	v		Па	to			Chec	k hy	, U	ונ	י בח) to		<u>_</u>
									awn	ig ie	<i>.</i>					Ca	0 JI C	y E			2/12)/วก	24	Check	хbу			Da	ie.		
																		1		0.	5/12	120	24								
Ref									(Calc	ula	tion	s													C	Dutp	out			
					ed Ra	ition		viet	noc	a 																		Inp	ut		
Ref	W Tł	<i>'allii</i> ne F	ngfo Rati	ord ona	Proce I For	e <i>dure</i> mula	9 - 1	Vol	4 - Qr	The 5 = (∂ <i>M</i> ∉ Ci	odif A	ied	Ra	atio	nal	me	tho	d									Ca Lin	lc kec	ł	
			De		Discl	ara		(c)																		<u> </u>		<u> </u>			
		р – –		mo	Disci	lange		S) offi	oion	. +															-	\vdash		+			
		_		me		less		eme		IL 				- 5 (<u> </u>		4	•							+	<u> </u>		<u> </u>	\vdash		
		-	A	/era	ige R	ainta	all Ir	iter	isity	/ au	ring	g tir	ne		Jon	cer	itra	tior	1 (m	1m/	nou	ir)			+	<u> </u>		<u> </u>			
	A	-		ontr	Ibutin	ig Ca	atch	ime	ent A	Area	i (n	a)														<u> </u>		+			
																										<u> </u>					
	lf	tha	Δre	22 (A) is	ovnr	200	ed.	in F	lect	oro	6 2	nd	tha	rai	nfal	lin	ton	eitv	(i)	in					\square		\vdash			
	m	m/∣	hr ti	he e	eguat	ion h	eco Deco	ou ome	es	1000	are	,u d	пu		ıal	ma		GH	Sity	(י)	111		-		-	\vdash		\vdash	$\left - \right $	-	
			1	1											1						1				+	┢		\vdash			
									0-			۔ م ہ	: ^												-	-					
									ЧР) — <u>4</u>	2.70														-	-					
																									+	┢		\vdash			
	C	= 0		<u> </u>		C	= r	ror	orti	ion	of r	aint	fall	on	cat	chn	non	t \v/	hic	h					+	┢		\vdash			
	Ŭ	- c	/v C	'R		 an	ne:	are	2010	surf	ace	rıı rıı	nof	fin	sto	rm	dra	ina	ne	= =	ton	n =			+	┢		\vdash			
						av	era	ae	0.7	5 (0	.6 i	n ra	apic	llv o	drai	nin	a so	oils	.gc &().9	in				-						
		appears as surface runoff in storm drainage system = average 0.75 (0.6 in rapidly draining soils & 0.9 in heavy soils) C _R = constant value of 1.30																+	-		<u> </u>										
	C.	. =		1	00																				-	+					
	C	, . =		<u> </u>	1.3																				+	$\left \right $		+			
				<u> </u>																					+						
	C	:=			13																				+	$\left \right $		+			
					1.0																										
																									-	+					
	A	vlac	/ina	the	dime	ensic	nle	ss i	coe	ffici	ent	usi	ina	the	e pa	ran	nete	ers	abo	ove	aiv	es									
	a	revi	isec	d eq	juatio	n of:							5		•						5				+						
																									1						
									Qr) = 2	2.7 [,]	1 i	Α																		
																									1						
																									1						
																									1						
																									1						
		+	-				-	-	-			-				-							-			\square		\square			
																															_
	Ті	m۵	of	Co	ncon	trati	on	(Tc	<u>۱</u>				_		_		_	_	_	1		1		I			_		ιT		_

ЛТК			ς					Pro	oject:	Col	eg	Gwei	nt P	hase	e 2									Jot	o ref:	: 52	28425	5	
								Pro Mo	pose difie	ed D d Ra	eve tior	elopm nal M	nen eth	t Sit∉ od	;							(Calc sh	nee	et no of		6	re (ev)
								Dra	awing	g ref.					Ca	lc b S	y SF		Dat 03	te 8/12	/2024	(Check	by			Date		
Ref								<u>.</u>	С	alcu	latio	ons			<u>.</u>										Οι	utpu	ut		
									1	lc =	te -	+ tf																	
														_															
	tc :	=		Tin	ne of	Cor	ncer	ntra	tion						<u> </u>														
	le te	=		l in	ne of	Ent	ry -	rep	rese	nts	del	lay &	at	tenu	atio	n o	t flc	W C	ove	r gr	ound	เรเ	urface						
	tf =	=		IIn	ne or		w th	rou	gn p	ipe	sys	stem	το	poin	tur	nde	r co	nsi	aer	atio	n								
														_															
	Th	e W	/alli	inaf	ord F	Proc	edu	re v	voule	d re	cor	nme	nd	the '	follc	wir	na te	- V2	alue	s.									
			/ an	iigi													ig t												
	Re	turi	n Pe	erio	d	t _e	(m	ins)			ι	Use I	on	ger t	ime	es o	fer	ntry	at										
	5 y	/rs				3	- 6				e	each	ret	turn	peri	iod	for	lar	ge f	lat									
	2 y	/rs				4	- 7				S	subc	atc	hme	nts	(ar	ea :	> 4(00n	n²,									
	1 y	/r				4	- 8				S	slope	e <1	1:50))														
	1 r	nth				5	- 10																						
											ι	Use	sma	aller	val	ues	s for	sn	nall										
											5	steep) SL 2	ubca	tchi	me	nts	(are	ea										
											<	<200	m-	, SIO	pe >	>1:.	30)												
														_															
						_	-															_							
	t	_		1	0	m	ins							_								_							
	∙e t₊=	=		- -	5	m	ins				_																		
	 ۰ tړ:	=		1	5	m	ins		assu	me 1	5m	in eve	ent i	is apr	propr	iate	des	ian e	ever	nt - s	ee pa	5							
	Ū													1	Ė			U				T							
													_																
																						_							
						_								_								_							
	-							-	\vdash		+		-		-							+			\rightarrow	+	_		
	 -					+					+		+		-							╉			\rightarrow	+			
	-										+		-	+								+			+	\dashv			
						1					+											ϯ			+				
													1									1				1			
																						\square							
						_							_	_												$ \downarrow$			
	-							Ļ		_	\parallel		+	_	-							\downarrow				$ \rightarrow$			
	As	ses	sm	nen	t of F	Rain	fall	Int	ensi	ty	_	_	_	_	-							+			-+	-			
	<u>.</u>		4		Data	rmi			<u> </u>	in r		foll c	<u>הק</u>	the		ffir	iont	r f.	or fl	20		+				-			
	St	ep ′	I		Dele		ie il	13-6	וו טכ	11117	a1[1]	iali a	nu	uie	coe	IIIC	ent	. 1 10	ט נו	ie									

ΛTK	CINS		Project: C	coleg Gwent Phas	se 2		Job ref	: 5228425	
			Proposed	Development Si	te		Calc sheet no		rev
			Modified	Pational Mothod					0
			Drewiner		Cala hu	Dete	Ol Chaoli hui	0 Data	0
			Drawing r	er.	Calc by	Date	Спеск ру	Date	1
					SF	03/12/2024			
Ref			Cal	culations			0	utput	
		site from th	e mapping	included in the	Wallingford F	Procedure			
		ME Comin				duration			
			is – 5 year	F 60 Mon					H
			ui - Use ivi	3-00 Map					
		M5-60 min	Rainfall	19.6	(mm - To	otal rainfall)			
		$\mathbf{r} = ratio of t$	5vr - 60mir	duration and 5	5 vr - 2 dav du	ration			
		rainfall dent	th - Use r r	nap					
							+ + + + + + + + + + + + + + + + + + +		
		r		0.247					
	Step 2	Determine	rainfall dep	oths for 5 year r	eturn period fo	or all			
		required ret	turn period	s, D = M5 - D					
		Using the r	value abo	ve establishing	the Z1 value f	rom the			
		graph in the	e Wallingfo	ord procedure (F	Fig A.3a)				
					5 - 7				
			0.017						
		r =	0.247						
									<u> </u>
	Return	Period D	uration (D)) Z1	M5-D	(mm total)			
	M5		5 Min	0.28		5.49			
	M5		10 Min	0.49		9 60			
	M5		15 Min	0.56					
	ME		20 Min	0.30		10.30			
	GIVI			0.72		14.11	+ + + + + + + + + + + + + + + + + + +		
	M5		1 Hour	1.00		19.60			
	M5		2 Hour	1.20		23.52	+ + + + + + + + + + + + + + + + + + +		<u> </u>
	M5		4 Hour	1.60		31.36			
	M5		6 Hour	<mark>1.80</mark>	3	35.28			
	M5		10 Hour	2.20		13.12			
	M5-D v	alues are calo	ulated by	factoring the M!	5-60 value by	71			
							+ + + + + + + + + + + + + + + + + + +		
							+ + + + + + + + + + + + + + + + + + +		
							+ + + + + + + + + + + + + + + + + + +		<u> </u>
	Step 3	Determine	MT-D						
		This is dete	ermined fro	m the relations	hip				
					···r				

T	KI	N	ς
			2

Project: Coleg Gwent Phase 2

Job ref: 5228425

Calc sheat no method (Calc sheat no method </th <th>/\ I K</th> <th></th> <th>Ν</th> <th>5</th> <th></th>	/\ I K		Ν	5																											
Modified Rational Method orf 6 0 Ref Calculations Output Modified Rational Method SF Date Output Ref Z Values for Rainfail Depths Colspan="2">Output MS Rainfail (mm) MI MS MIO M20 MSO MION M20 MSO MION M2 L <thl< th=""> L L <thl< th=""></thl<></thl<>										Pro	pos	ed	Dev	elo	pme	ent S	Site								Calc	shee	et no	С			re۱
Ref Calc by 03/12/2024 Check by 03/12/2024 Check by 03/12/2024 Date 03/12/2024 Ref V										Мо	difie	d R	atic	onal	Me	thoo	d										С	of	6	3	0
SF 03/12/2024 Ref Calculations Output MT - D = Z2 (MS-D) Z Values for Rainfall Depths MS Rainfall (mm) M1 M2 M5 M10 M20 M30 M100 A MS Rainfall (mm) M1 M2 M5 M10 M20 M30 M100 A M5 M10 M20 M30 M30 M100 A A A M5 M10 A A M5 M10 A A M5 M10 A M30 M31 M31 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Dra</th><th>awin</th><th>g re</th><th>ef.</th><th></th><th></th><th></th><th></th><th>Cal</th><th>c by</th><th></th><th>Da</th><th>ate</th><th></th><th></th><th>Chec</th><th>k by</th><th>/</th><th></th><th>Dai</th><th>te</th><th></th></t<>										Dra	awin	g re	ef.					Cal	c by		Da	ate			Chec	k by	/		Dai	te	
Ref Output MT - D = ZZ (MS-D) I <th></th> <th>SF</th> <th></th> <th>0</th> <th>3/12</th> <th>2/202</th> <th>24</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>																			SF		0	3/12	2/202	24							
MT - D = Z2 (M5-D) Z2 Values for Rainfall Depths Image: Constraint of the second seco	Ref										C	Calc	ulat	ion	S												С	Jutp	ut		
MT - D = 22 (MS-D) Z2 Values for Rainfall Depths Image: Constraint of the second				T	\square	\square																				—					_
MS Rainfall (mm) MI MZ MS M100 M20 M30 M50 M100 5 0.62 0.79 1.02 1.30 1.46 1.56 1.79 1.0 10 0.61 0.79 1.03 1.22 1.41 1.55 1.66 1.91 20 0.64 0.81 1.03 1.24 1.44 1.55 1.66 2.03 1.41 30 0.68 0.81 1.03 1.24 1.44 1.54 1.64 2.01 30 0.68 0.81 1.03 1.24 1.44 1.54 1.64 2.01 40 0.70 0.84 1.02 1.71 1.34 1.43 1.52 1.81 1.97 40 0.76 0.87 1.02 1.17 1.34 1.43 1.54 1.64 100 0.78 0.88 1.01 1.12 1.21 1.27 1.33 1.40 1.44 100 0.78 0.88 1.01 1.11 1.92 1.31 1.40 1.41 <td< td=""><td></td><td></td><td></td><td>-</td><td></td><td>M</td><td>T - I</td><td>D =</td><td>Z2</td><td>(M</td><td>5-D</td><td>)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				-		M	T - I	D =	Z2	(M	5-D)																			
MS Rainfail (mm) M1 M2 M3 M10 M20 M30				1		-						Z 2	Va	lue	s fo	or F	Rair	nfal	l De	pth	าร										
5 0.62 0.79 1.02 1.19 1.36 1.69 1.79 10 0.61 0.79 1.03 1.22 1.41 1.55 1.69 1.91 15 0.62 0.80 1.03 1.24 1.44 1.57 1.70 1.99 20 0.64 0.81 1.03 1.24 1.44 1.55 1.69 1.91 25 0.66 0.82 1.03 1.24 1.44 1.54 1.61 1.99 40 0.70 0.84 1.02 1.19 1.38 1.47 1.56 1.89 50 0.72 0.85 1.02 1.17 1.34 1.43 1.52 1.81 100 0.78 0.88 1.02 1.13 1.25 1.33 1.40 1.54 150 0.78 0.88 1.01 1.1 1.9 1.45 1.64 150 0.78 0.88 1.01 1.1 1.9 1.45 1.44 150 0.78 0.88 1.01 1.24 1.47 <td></td> <td></td> <td>M5 R</td> <td>air</td> <td>nfal</td> <td>l (m</td> <td>nm)</td> <td></td> <td>N</td> <td>11</td> <td>Μ</td> <td>2</td> <td>Μ</td> <td>5</td> <td>M1</td> <td>10</td> <td>M</td> <td>20</td> <td>М3</td> <td>0</td> <td>M50</td> <td>M</td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			M5 R	air	nfal	l (m	nm)		N	11	Μ	2	Μ	5	M1	10	M	20	М3	0	M50	M	100								
10 0.61 0.79 1.03 1.22 1.41 1.55 1.69 1.91 20 0.64 0.80 1.03 1.24 1.44 1.57 1.70 1.99 1 20 0.64 0.81 1.03 1.24 1.44 1.57 1.70 1.99 1 30 0.66 0.82 1.03 1.24 1.42 1.52 1.61 1.97 40 0.70 0.84 1.02 1.17 1.34 1.43 1.52 1.81 75 0.76 0.87 1.02 1.14 1.28 1.37 1.45 1.64 100 0.78 0.88 1.01 1.12 1.27 1.33 1.40 1.54 200 0.78 0.88 1.01 1.11 1.9 1.25 1.30 1.40 Table A1 Relationship between rainfall of return period T(MT) and M5 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40			5	_	_				0.	62	0.	79	1.(02	1.1	19	1.:	36	1.4	6	1.56	1.	79			_					
15 0.62 0.03 1.24 1.44 1.57 1.70 1.99 25 0.66 0.81 1.03 1.24 1.44 1.54 1.66 1.66 2.03 30 0.68 0.83 1.03 1.24 1.44 1.54 1.64 2.01 1.14 1.52 1.51 1.97 1.51 1.97 1.56 1.88 1.55 1.81 1.55 1.81 1.55 1.81 1.55 1.81 1.55 1.81 1.55 1.81 1.55 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.55 1.54 1.55 1.54 1.55 1.54 1.54 1.54 1.54 1.54 1.55 1.54 1.55 1.54 1.54 1.55 1.54 1.54 1.54 1.55 1.54 1.54 1.54 1.54 1.54 1.55 1.54 1.54 1.54 1.55 1.55 1.55 1.54 1.54 1.54 1.55 1.54 1.54 1.54 1.55 1.55 1.55 1.5			10	_	_				0.	61	0.	79	1.(03	1.2	22	1.4	41	1.5	5	1.69	1.	91			<u> </u>	<u> </u>			┝──┾	_
20 0.64 0.81 1.03 1.24 1.45 1.56 1.56 2.03 30 0.68 0.82 1.03 1.24 1.44 1.54 1.64 2.01 30 0.68 0.83 1.03 1.24 1.44 1.52 1.61 1.97 40 0.70 0.84 1.02 1.19 1.38 1.47 1.56 1.89 50 0.72 0.85 1.02 1.14 1.23 1.45 1.64 100 0.78 0.88 1.02 1.13 1.25 1.33 1.40 1.54 150 0.78 0.88 1.01 1.12 1.21 1.27 1.33 1.45 200 0.78 0.88 1.01 1.12 1.21 1.27 1.33 1.40 Table A1 Relationship between rainfall of return period T(MT) and M5 1.03 1.40 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41			15	_	_				0.	62	0.8	80	1.0	03	1.2	24	1.4	44	1.5	7	1.70	1.	99			_	ļ!			┝──┾	_
25 0.66 0.82 1.03 1.24 1.44 1.54 1.97 40 0.70 0.84 1.02 1.19 1.38 1.47 1.56 1.89 50 0.72 0.85 1.02 1.11 1.34 1.45 1.84 1.62 1.81 75 0.76 0.87 1.02 1.13 1.25 1.31 1.45 1.64 100 0.78 0.88 1.01 1.12 1.21 1.27 1.33 1.45 200 0.78 0.88 1.01 1.11 1.9 1.25 1.30 1.40 1.54 150 0.78 0.88 1.01 1.11 1.9 1.25 1.30 1.40 1.54 200 0.78 0.88 1.01 1.11 1.9 1.25 1.30 1.40 1.54 4 Wallingford Procedure Vol 4 1.54 1.54 1.54 1.54 1.55 1.56 1.51 1.51 1.54 1.54 1.54 1.54 1.54 1.55 1.55 1.55 <t< td=""><td></td><td></td><td>20</td><td>+</td><td>_</td><td></td><td></td><td></td><td>0.</td><td>64</td><td>0.8</td><td>81</td><td>1.0</td><td>03</td><td>1.2</td><td>24</td><td>1.4</td><td>45</td><td>1.5</td><td>6</td><td>1.66</td><td>2.</td><td>03</td><td></td><td></td><td>+</td><td><u> </u></td><td></td><td></td><td>┝──┾</td><td>—</td></t<>			20	+	_				0.	64	0.8	81	1.0	03	1.2	24	1.4	45	1.5	6	1.66	2.	03			+	<u> </u>			┝──┾	—
30 0.68 0.63 1.03 1.42 1.52 1.61 1.97 50 0.72 0.85 1.02 1.19 1.84 1.47 1.56 1.89 75 0.76 0.87 1.02 1.14 1.28 1.37 1.45 1.64 1.44 100 0.78 0.88 1.02 1.13 1.25 1.33 1.40 1.54 100 0.78 0.88 1.01 1.12 1.21 1.33 1.40 1.54 200 0.78 0.88 1.01 1.11 1.12 1.27 1.30 1.40 Table A1 Relationship between rainfall of return period T(MT) and M5 Image: Control (MT) and M5 Image: Control (MT) and M5 Image: Control (MT) and M5 ef Wallingford Procedure Vol 4 Image: Control (MT) and M5 ef Image: Control (MT) and M5 ef Image: Control (MT) and M5 Image: Control (MT) and M5 Image: Control (MT) and M5 Imag			25	+-	_				0.	66	0.0	32	1.0	03	1.2	24	1.4	44	1.5	4	1.64	2.	01			-	<u> </u>			\vdash	_
40 0.70 0.84 1.02 1.19 1.38 1.47 1.50 1.88 75 0.76 0.87 1.02 1.11 1.41 1.52 1.81 1.44 100 0.78 0.88 1.02 1.13 1.42 1.33 1.44 1.64 100 0.78 0.88 1.01 1.12 1.33 1.45 1.64 150 0.78 0.88 1.01 1.12 1.27 1.33 1.45 200 0.78 0.88 1.01 1.11 1.19 1.25 1.30 1.40 Table A1 Relationship between rainfail of return period T(MT) and M5 1.11 1.19 1.25 1.40 1.41 1.41 1 1 1 1.11 1.19 1.25 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.45 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44			30	╞	—				0.	68	0.0	33	1.0	03	1.2	24	1.4	42	1.5	2	1.61	1.	97				<u> </u>			\vdash	+
30 0.72 0.83 1.02 1.14 1.24 1.45 1.64 100 0.78 0.88 1.02 1.14 1.25 1.33 1.40 1.54 150 0.78 0.88 1.02 1.13 1.25 1.33 1.40 1.54 150 0.78 0.88 1.01 1.12 1.27 1.33 1.45 200 0.78 0.88 1.01 1.11 1.19 1.25 1.30 1.40 Table A1 Relationship between rainfall of return period T(MT) and M5 Image: Construct of the temperiod T(MT) and M5 Image: Construct of the temperiod T(MT) and M5 Image: Construct of the temperiod T(MT) and M5 ef Wallingford Procedure Vol 4 Image: Construct of the temperiod T(MT) and M5 Image: Construct of the temperiod T(MT) and M5 Image: Construct of temperiod T(MT) and M5 ef Wallingford Procedure Vol 4 Image: Construct of temperiod T(MT) and M5 Image: Construct of temperiod T(MT) and M5 Image: Construct of temperiod T(MT) and M5 ef Wallingford Procedure Vol 4 Image: Construct of temperiod T(MT) and M5 Image: Construct of temperiod T(MT) and M5 Image: Construct of temperiod T(MT) and M5 ef			40	+	—				0.	70 70	0.0	34 25	1.0	02	1.1	19	1.	38	1.4	/ 2	1.56	1.	89			+	<u> </u>		-	├──┼	-+
100 0.78 0.89 1.02 1.14 1.28 1.33 1.40 1.54 150 0.78 0.88 1.01 1.12 1.27 1.33 1.45 200 0.78 0.88 1.01 1.12 1.27 1.33 1.40 Table A1 Relationship between rainfall of return period T(MT) and MS Image: constraint of the second s			5U 75	+	+	—		-	0.	1 Z 76	0.0	55 97	1.0	02	1.	17	1.	34 20	1.4	3	1.52	1.	81 64				<u> </u>			\vdash	+
100 0.78 0.81 1.01 1.12 1.21			100	-		_			0.	70 78	0.0	21	1.0	02	1.	14	1.	20 25	1.3	ן 2	1.45	1.	04 57			+	<u> </u>				_
100 0.78 0.88 1.01 1.11 1.27 1.28 1.40 1200 0.78 0.88 1.01 1.11 1.19 1.25 1.30 1.40 Table A1 Relationship between rainfall of return period T(MT) and M5 Image: constraint of the second sec		150 0 200 0						0.	78	0.0	20	1.0	02 01	1.	12	1.	2J 21	1.0	7	1.40	1.	J4 15			+					-	
Table A1 Relationship between rainfall of return period T(MT) and M5 ef Wallingford Procedure Vol 4 Image: Construction of the transmission of the transmissing transmission of the transmission of the transmission								0.	78	0.0	30 88	1.0	01	1.1	11	1.	2 I 19	1.2	5	1.30	1.	40			+					_	
Table A1 Relationship between rainfall of return period T(MT) and M5 ef Wallingford Procedure Vol 4 Image: Constraint of the second s								0.		0.			01				10			1.00					+					-	
ef Wallingford Procedure Vol 4 V		Table A1 Relationship be Wallingford Procedure V							be	twe	en	rain	nfall	of	retu	ırn	per	iod	T(M	T)	and	M5				+					-
NO Year M10 - D Event M5-D Z1 values for 100 year event M100 - D Event Total rainfall Lower Higher Interpolated Total rainfall S Min 5.490 5 1.79 10 1.91 1.80 9.89 118.60 10 Min 9.60 5 1.79 10 1.91 1.80 9.89 118.65 10 Min 9.60 5 1.79 10 1.91 1.80 9.89 118.65	ef								e Vo	ol 4																+					-
D0 Year M10 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M6 - D Event M5-D Z1 values for 100 year event M100 - D Event M6 - D Event M5-D Z1 values for 100 year event Total rainfall M6 - D Event M5-D Z1 values for 100 year event M100 - D Event M6 - D Event M5-D Z1 values for 100 year event M100 - D Event M6 - D Event M5-D Z1 values for 100 year event M100 - D Event M6 - D Event M5-D Z1 values for 100 year event M100 - D Event M6 - D Event M5-D Z1 values for 100 year event M100 - D Event M6 - D Event M5-D Z1 values for 100 year event M100 - D Event M6 - D Event M5-D Z1 values for 100 year event M100 - D Event M6 - D Event M5-D Z1 values for 100 year event M100 - D Event M6 - D Event M10 - D Event M10 - D Event M10 - D Event M6 - D Event M10 - D Event M10 - D Event M10 - D Event M6 - D Event M10			Wallingford Procedure V																						-						
00 Year M5 - D Event M5-D Z1 values for 100 year event M100 - D Event 5 Min 5.49 5 1.79 10 1.91 1.80 9.89 118.6 10 Min 9.60 5 1.79 10 1.91 1.80 9.89 118.6 10 Min 9.60 5 1.79 10 1.91 1.80 9.89 118.6		Wallingford Procedure																					+					-			
Model Model <td< td=""><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td>-</td></td<>				+																						+					-
0 0																								-							
00 Year M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-0 Z1 values for 100 year event M100 - D Event M5 - D Event M5-0 Z1 values for 100 year event M100 - D Event M6 - D Event M5-0 Z1 values for 100 year event M100 - D Event M6 - D Event M5-0 Z1 values for 100 year event M100 - D Event M6 - D Event M5-0 Z1 values for 100 year event M100 - D Event M6 - D Event M5-0 Z1 values for 100 year event M100 - D Event M6 - D Event M6 - D Event M10 - D Event Total M6 - D Event M10 - D Event Total M10 - D Event M6 - D Event M10 - D Event Total M10 - D Event M10 - D Event M10 - D Event Total M10 - D Event M10 - D Event M10 - D Event Total M10 - D Event M10 - D Event M10 - D Event Total M10 - D Event				1	_	-																				-					
MS - D Event MS-D Z1 values for 100 year event M100 - D Event MS - D Event MS-D Z1 values for 100 year event M100 - D Event MS - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z2 mm <z2< td=""> Z2 M10 Min 9.60 5 1.99</z2<>				1	_	-																				-					
No. 1 No. 1 <td< td=""><td></td><td></td><td></td><td>1</td><td>_</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></td<>				1	_	-																				-					
Image: Solution of the second of the sec				1	_	-																				-					
Image: Solution of the second of the sec					-	-																				-					
Model Model <td< td=""><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td></td<>				+																						+					
Main				+	+																					+					+
0 0				-		-																									
Image: Solution of the second of the sec				+	+																					+					+
Main				-		-																									
NO Year M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-A 5 Min 5.49 5 1.79 10 1.91 1.80 9.89 118.67 10 Min 9.60 5 1.79 10 1.91 1.90 18.25 109.44				+	+																					+					+
Model Model <td< td=""><td></td><td></td><td></td><td>+</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td></td<>				+	-																					+					
No Year Model <				+	_	-																				+					
Main Model Main																												-			
M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M5 - D Event M5-D Z1 values for 100 year event M100 - D Event M100 - D Event M5-D Z1 values for 100 year event M100 - D Event M100 - D Event M5-D Z1 values for 100 year event M100 - D Event M100 - D Event M5-D Z1 values for 100 year event M100 - D Event M100 - D Event M5-D M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M100 - D Event M10 - D Event M10 - D Event M10 - D Event M10 - D Event M10 - D Event M10 - D Event M10 -																							+					-			
MO YearMS - D EventMS-DZ1 values for 100 year eventM100 - D EventM5 - D EventM5-DZ1 values for 100 year eventM100 - D EventTotal rainfallTotal rainfallLowerHigher 1.22InterpolatedTotal rainfallIntensi mm/h5Min5.4951.79101.911.809.89118.6310Min9.6051.79101.911.9018.25109.4415Min10.98101.911.51.991.9321.1484.56																							+								
M5 - D Event M5-D Z1 values for 100 year event M100 - D Event Total Total Total Total Total rainfall Lower Higher Interpolated rainfall Intensi 5 Min 5.49 5 1.79 10 1.91 1.80 9.89 118.6 10 Min 9.60 5 1.79 10 1.91 1.90 18.25 109.49 15 Min 10.98 10 1.91 1.93 21.14 84.56	0 Year																								+					-	
Interview Total rainfall Lower Higher Interpolated Total rainfall Intensi 5 Min 5.49 5 1.79 10 1.91 1.80 9.89 118.6 10 Min 9.60 5 1.79 10 1.91 1.90 18.25 109.49 15 Min 10.98 10 1.91 15 1.99 1.93 21.14 84.56			M5 -	וח	Eve	nt			N	15-0	ר			71	val		s fr	or 1	00 v	ear	r eve	nt				M	100	- D	Ev	/ent	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										Fota	al				vui	400			,	Jui						۲	Fota	al			
mm mm Z2 mm Z2 Z2 mm mm/h 5 Min 5.49 5 1.79 10 1.91 1.80 9.89 118.6 10 Min 9.60 5 1.79 10 1.91 1.90 18.25 109.49 15 Min 10.98 10 1.91 15 1.93 21.14 84.56						ra	ainfa	all				Lov	ver			High	er	Int	terp	olat	ted		ra	ainfa	all		Inte	ensi			
5 Min 5.49 5 1.79 10 1.91 1.80 9.89 118.65 10 Min 9.60 5 1.79 10 1.91 1.90 18.25 109.49 15 Min 10.98 10 1.91 15 1.99 1.93 21.14 84.56										mm	۱			mn	n	Z	2	mn	n	Ζ2	2	Z	22			1	mm	1		m	m/h
10 Min 9.60 5 1.79 10 1.91 1.90 18.25 109.49 15 Min 10.98 10 1.91 1.99 1.93 21.14 84.56		5 Min								5	.49			Ę	5	1.7	79	1	0	1.9	1	1.	80			9	9.89	9		11	8.6
15 Min 10.98 10 1.91 15 1.99 1.93 21.14 84.56		10 Min							9	.60	_		Ę	5	1.7	79	1	0	1.9	1	1.	90			1	8.2	5		10	9.4	
			15	Μ	lin					10	.98			1	0	1.9	91	1	5	1.9	9	1.	93			2	21.1	4		84	1.56
30 Min 14.11 10 1.91 15 1.99 1.98 27.89 55.77			30	Μ	lin					14	.11			1	0	1.9	91	1	5	1.9	9	1.	98			2	27.8	9		55	5.77

ATL	7 1NI	C	Project: Cole	eg Gwen	t Phase	e 2			Job ref:	5228425
		5	Proposed De	evelopm	ent Site	;			Calc sheet no	rev
				ional ivie	elnoa			Data	Of Of State	<u>6</u> U
			Drawing ref.			Calc b S	y SF	Date 03/12/2024	Спеск by	Date
Ref			Calcula	ations					Out	tput
	1	Hour	19.60	15	1.99	20	2.03	2.03	39.73	39.73
	2	Hour	23.52	20	2.03	25	2.01	2.02	47.42	23.71
	4	Hour	31.36	25	2.01	30	1.97	1.96	61.43	15.36
	10	Hour	43.12	30	1.97	40	1.89	1.87	80.42	8.04
<u>30 Year</u>	M5	DEvont	M5 D	71 1/2		or 20 y		iont	M20 D	Event
	1413 -	DEvent	Total	Lo	wer	Hic	her	Interpolated	Total	Event
			rainfall					·	rainfall	Intensity
			mm	mm	Z2	mm	Z2	Z2	mm	mm/hr
	5	Min	5.49	5	1.46	10	1.55	1.47	8.06	96.74
	10	Min	9.60	2 10	1.40	10	1.55	1.54	14.82	68.23
	30	Min	14.11	10	1.55	15	1.57	1.57	22.10	44.20
	1	Hour	19.60	15	1.57	20	1.56	1.56	30.60	30.60
	2	Hour	23.52	20	1.56	25	1.54	1.55	36.36	18.18
	4	Hour	31.36	25	1.54	30	1.52	1.52	47.51	11.88
	6	Hour	35.28	25	1.54	30	1.52	1.50	52.88	8.81
	10	Hour	43.12	30	1.52	40	1.43	1.40	60.45	6.05
0 1/2 2 2										
<u>z rear</u>	M5 -	D Event	M5-D	71 va	luos fa	or 2 ve	ar ovo	nt	M2 - D I	Event
			rainfall	Lo	wer	Hic	her	Interpolated	rainfall	Intensity
			mm	mm	Z2	mm	Z2	Z2	mm	 mm/hr
	5	Min	5.49	5	0.79	10	0.79	0.79	4.34	52.03
	10	Min	9.60	5	0.79	10	0.79	0.79	7.59	45.52
	30	Min	10.98	10	0.79	15	0.8	0.79	8.69	34.77
	1	Hour	19.60	15	0.73	20	0.81	0.81	15.86	15.86
	2	Hour	23.52	20	0.81	25	0.82	0.82	19.22	9.61
	4	Hour	31.36	25	0.82	30	0.83	0.83	26.12	6.53
	6	Hour	35.28	25	0.82	30	0.83	0.84	29.67	4.95
	10	Hour	43.12	<u>30</u>	0.83	40	0.84	0.84	36.35	3.64
	Calcı	ulation of F	Runoff for Site / Cate	chmen	t					
			Op = 2.78 (C i A						
			Qp = 2.78 0	Cv Cr	i A					
	C.	. =	1.00							
			1.3							
							45	alume the second		
	t _c		15		As	sume	15min	auration eve	nt appropriate	

ЛТК		ς				ľ	Pro	oject	:: Co	oleg	g G\	went l	Pha	se	2								Job) ref:	52	2842	5	
						Ī	Pro	pos	ed	De\ Patio	/elo	pmer	nt Si	te								Calc s	shee	t no		6	r	ev 0
						ľ	Dra	awin	a re	ef.	Jila	i wieti	lou		Calc I	οv		Da	ate			Checl	k bv	01		Date		
									<u> </u>							SF		0	3/1	2/20	24							
Ref								C	Calc	ula	tion	S												Οι	Jtpu	Jt		
	1		=				8	4.5	6 2				N	/11()0 - 1 1 - 1	15 a	ppi	op	riat	e to	rt _c				_			
							<u>0</u> २	0.Z	3 7				N	12	- 15	ann	ron	ria	ale te f	ort	L _C				—			
									•																	-		-
	A		=				27	62.	69		m ²	2	С	Cat	chme	ent a	are	a fo	or d	leve	lop	ed site	•					
			=				0	.27	6		ha																	-
				C	Ĵþ	=					84	4.3				l/s	5	10)0 y	/ear								
											68	3.1				l/s	;	30) ye	ear					_			
										1	34	4.7	-			l/s	;	2	yea	ar					_			
									-																_			
																				_					_			
																		-		_					—			
																									-			
	Note	the	abo	ove v	alue	cons	sid	ers	tha	at th	ne c	atch	ner	nt a	as 10	0%									-			-
	impe	rme	able	e. Th	ne va	alue r	nee	eds	to	be [·]	fac	tored	by	an	арр	ropi	riate	e va	alue	e to	-				-			-
	acco	untf	or t	he si	urfac	e typ	be																					
Ref	McG	hee:	Wa	ater S	Supp	ly ar	nd :	Sev	ver	age)	TABL	E 13	-3 oef	ficien	ts fo	or d	liffe	ren	t								
	Table	e 13	-3									area	3		and.	lod		80	N.O	nic.								
	Rund	off co	oeffi	icien	ts fo	r diffe	ere	ent a	area	as		Descr	ption	n of	area	1		С	11	-					_			
											_	Busin	ess	i en	infall			0.7							_			
											-	Ne	whto ghbc	orho	area od are	a		0.5	0-0.	93 70					-			
											$\left - \right $	Resid	entia gle-fa	al (u	rban) ly area			0.3	0-0.	50					_			-
											-	Mu	ltiun Itiun	its,	detach	ed		0.4	0-0.	60 75						_		-
											-	Resid	entia	al (s	urburt	oan)		0.2	5-0.	40					-			
												Indus	trial	t ai	cas			0.5		00					-			
												He	ht avy					0.5	0-0. 0-0.	80 90								
												Parks	, cer roun	mete ids	eries			0.1	0-0. 0-0.	25 35								
												Railr	bad y	yard ed	ls areas			0.2	0-0. 0-0.	40 30								
													-	-	1	1	1	1	1	-	_				_			
																									_			
	Pre L	Deve	elop	omer	nt _		20		0/				liniin								2	مامط						-
	Perm			Area	=		20	<mark>).00</mark>	70			l	nin	npi	roveo	are	eas		=	0	<mark>.2</mark>	Unde	veic	pec		ana		
	Impe	rme	ahle	- Are	- a		80	00	%			4	II R	2un	o-off (C =					1	Asnh	alt F	ເ		vistir	la n	lot
					<i>,</i> u				70			,		(un		Ĭ						Лорп			1, 0	XIStill	9 P	
																									-			
	Runc	off C	oeff	ficien	nt = p	erm	eal	ble	are	a x	С	+ imp	berr	ne	able	are	a x	С										
	Seleo	cted	run	off c	oeffi	cient						0.8	1															
										Re	sid	entia	I - N	۸ul	ltiuni	ts, a	tta	che	d					\square	\square			
													_			_		-	_	_	_			-+	\downarrow		_	
	Fact	orec	l ru	noff	fron	n Sit	e						_		_			-		-			$\left \right $	-+	+	+		$\left - \right $

		N	S					Proje	ect:	Cole	eg G	Gwe	ent F	has	e 2								Joł	o rei	f: 5:	2284	425		
								Prop	ose	ed D	evel	lop	men	t Site	Э							Calc s	shee	et no)			re	۶V
								Modi	ified	d Ra	tion	al I	Meth	od										о	f	6	3	C)
								Draw	ving	g ref.					Ca	lc by	y	[)ate			Chec	k by			Dat	e		
																S	F		03/1	2/20)24								
Ref	Calculations																						0	utp	out				
				(٦р	=				7	70.8	3				l/s		100	yea	-									
										Ę	57.2	2				l/s		30 y	ear										
										2	29.1	I				l/s		2 ye	ar										

ΛΤΙ			C						Pro	jec	t: C	ole	g G\	wen	t Pł	nase	e 3									Jol	b re	f: 5	228	425		
			2					ŀ	Pro	nos	sed	De	velo	opm	ent	Site	;								Calc	shee	et no	0			re	.v
									Mo	difi	odu od F	Rati	onal	l Me	onc	onc nd	,									51100		∫ ∧f	(6	(יי ו
								ŀ	Dra	awir	na r	ef	onu			-u	Ca	lc h	v		Da	te			Chec	k hv		<u>л</u>	Da	te		
										a v v 11	ig i	CI.					Сa	с о с	y SE			3/12	0/20	24	Chee	коу			Da	10		
																		-	,		0.	5/12	./20	27								
Ref										(Calo	cula	tion	s													С	Jutp	out			
	Т	he	Мо	difie	ed F	Rat	ion	al N	let	hoo	b																		Inp	out		
Ref	V	Valli	ngfo	ord	Pro	ced	dure) - V	/ol	4 -	The	e M	lodii	fied	Ra	atio	nal	me	tho	d									Са	ılc		
	Т	he l	Rati	ona	al Fo	orm	ula			Qp) =	Ci	Α																Lin	iked	ł	I
	G	(p =	Pe	eak	Dis	cha	arge	э (I/s	s)																							
	C	:=	Di	me	nsic	onle	ess	Coe	effic	ier	nt																					
	i	=	A١	/era	ade	Ra	infa	ll In	ten	sitv	/ du	Irin	a tir	ne	of (Con	cer	htra	tion	n (m	nm/	hοι	ır)									
	A	=	С	ontr	ibut	ina	Са	atch	me	nt A	Are	a (h	ua)								-		Ĺ									
	lf	the	Are	a (A) i	s ei	xnre	esse	ed i	n ⊦	lec	tare	es a	nd	the	rai	nfa	ll in	ten	sitv	(i)	in										
	- In	nm/	hr t	he	eau	atic	on b		me	es	100		<i></i>	ina		- Tur	ma			ony	(י)								-			
			1	1			1																			+		<u> </u>	\vdash			
							-	+		<u> </u>		0 7														<u> </u>		<u> </u>	<u> </u>	-		
										Qp) =	2.1	80		<u> </u>											<u> </u>		<u> </u>	<u> </u>			
			_				-																					<u> </u>	<u> </u>			
													<u> </u>															<u> </u>				
	C	; = (νC	R			Cv	= pi	rop	orti	ion	i to	rain	fall	on	cat	chr	nen	nt w	hici	n					<u> </u>		<u> </u>	_			
							ap	pea	irs a	as s	suri		e ru	nof	t in	Sto	rm	dra	aina	ge	sys	ten	n =					<u> </u>			 	
							av	erac	ge i	J.7: ilc)	5 (L	0.0	in ra	аріс	ily o	urai	nin	g so	ons	άι	J.9	m									 	
							ne	avy	50	115)						1	1	1	1	1	1	1	1									
							C_R	, = c	on	sta	nt v	alu	e o	f 1.:	30																	
	C	, =		1	.00																											I
	C	R =			1.3																											
	() =			1.3																											
	A	/lag	/ina	the	e dir	ner	nsio	onles	SS (coe	ffic	ient	t us	ina	the	e pa	iran	nete	ers	abo	ove	aiv	es								 	
	a	rev	ised	d ec	quat	ion	of:							5		•						5							-			
																													-			
							-			Or) =	27	1 i	Δ												-						
							-			4	<u> </u>	2.1		$\widehat{}$															-			
							-	\square																		-			-			
								$\left \right $																		+		<u> </u>	\vdash			
			_				-		-	-																–		<u> </u>	<u> </u>			
			_				-																					<u> </u>	<u> </u>			
																												<u> </u>				
					_	_	<u> </u>	\square			-							_		_	_					<u> </u>		L	<u> </u>		 	
							<u> </u>	\square																		<u> </u>		L_	\vdash		 	
							\vdash																			⊥			\vdash		 	
]	-
												1				1	1					1			1							·
												1				1									1	1					 	
	Т	ime	of	Co	nce	ntr	atio	on (Tc')		1				1									1	1					 	

ЛТК			ς					Pro	oject:	Col	eg	Gwe	nt	Phas	e 3									Joł	o ref	: 52	22842	5	
								Pro Mo	pose dified	ed D d Ra	eve	elopr nal N	ne /let	nt Sit hod	e							(Calc sł	nee	et no	f	6	re	ev 0
								Dra	awing	g ref.					Ca	lc b S	y SF		Dat 03	te 8/12	/2024	(Check	by			Date		i
Ref								<u>.</u>	C	alcu	lati	ons													0	utp	ut		
									t	lc =	te -	+ tf																	
	tc :	=		Tin	ne of	Cor	ncer	ntra	tion																				
	te	=		Tin	ne of	Ent	ry -	rep	rese	nts	de	lay 8	<u>k</u> a	itteni	atic	n o	of flo	W (ovei	r gr	ound	รเ	urface						
	tf =	=		In	ne of	Flo	w th	rou	gh p	ipe	sys	stem	t to	o poii	nt ur	nde	r co	nsi	dera	atio	n								
						_																-							
	ть		/പി	inat	ord E		odu	ro v				mmo		d tha	foll		an t	- V/				+							
	111		all	ingi		100	euu		vouit			IIIIIe					ly ti	e ve	aiue	5.									
	Re	eturi	n Pe	erio	d	to	(m	ins)			1	Use	lor	naer	time	es o	of er	ntrv	at										
	5 \	/rs			-	3	- 6	-/				each	n re	eturn	per	iod	for	lar	ge f	lat									
	2 \	/rs				4	- 7					subc	at	chme	ents	(ar	ea	> 4	00n	n²,									
	1	/r				4	- 8				:	slope	e <	<1:50)														
	1 r	nth				5	- 10																						
											I	Use	sn	nalle	val	ues	s for	sn	nall										
											\$	stee	p s	subca	atch	me	nts	(are	ea										
											•	<200)m	² , slo	pe	>1::	30)												
					_																								
	t _e	=		1	0	m	ins																						
	t _f =	=		4	<mark>></mark>	m	ins										<u> </u>												
	ι _c -	-		1	5	m	ins		assu	me 1	I5m	ıın ev	ent	t is ap	prop	riate	des	ign (even	nt - s	ee pg	5							
						_																							
						-	-								-														
						+					+		+									╉			+			-	
							-	-		_					-	-						+			_			-	
														_											_				
										_	_		+									╉			_	_		-	
												_	+	_		-					_	+							
						+		-		+			+			-						╉			\rightarrow				
	٨٥	605	err	Ion	t of F	Pain	fall	Int	onei	tv			+			-						╉			\rightarrow			-	
	~3	365	5311	1011		\all			51131	٠y			+									╀			-+	-		-	
	St	en 1	1		Dete	rmir	ne N	/ 15-6	50 m	in ra	ain	fall a	and	d the	COF	effic	ient	r fo	or th	ne		╉			-+			-	
		- 14	-																	-		1			I			1	1

ΛTK	CINS		Project: C	oleg Gwent Pha	se 3		Job ref	: 5228425	
			Proposed	Development Si	te		Calc sheet no		rev
			Modified F	Pational Mathed					0
					Cala hu	Dete	Ol o ol i bui	Data	0
			Drawing r	er.	Calc by	Date	Спеск бу	Date	
					SF	03/12/2024			
Ref			Calo	culations			0	utput	
		site from th	e mapping	included in the	Wallingford F	Procedure			
		ME Comin				duration			
			is – 5 year Ib – Loo Mi	F 60 Mon					<u> </u>
		rainiaii depi	in - Use wi	5-60 Map					
		M5-60 min	Rainfall	19.6	(mm - To	otal rainfall)			
		$\mathbf{r} = ratio of t$	5vr - 60mir	duration and F	vr - 2 dav du	ration			
		rainfall dent	th _ I lea r n	nan			+ + +		
				Пар					<u> </u>
		r		0.247					
	Step 2	Determine	rainfall dep	oths for 5 year r	eturn period fo	or all			
		required ret	turn period	s, D = M5 - D					
		Using the r	value abov	ve establishing	the Z1 value f	rom the			
		araph in the	Wallingfo	rd procedure (F	Fig A 3a)				
		9		· - P· (.					
									H
		r =	0.247						
	Return	Period D	uration (D) Z1	M5-D	(mm total)			
	M5		5 Min	0.28		5.49			
	M5		10 Min	0.49		9.60			
	M5		15 Min	0.10					
	ME		20 Min	0.30		10.30			
	GIVI			0.72		14.11	+ + + + + + + + + + + + + + + + + + +		
	IM15		i Hour	1.00		19.60	+ + + + + + + + + + + + + + + + + + +		
	M5		2 Hour	1.20		23.52	+ + + + + + + + + + + + + + + + + + +		
	M5		4 Hour	1.60		31.36			
	M5		6 Hour	1.80		35.28			
	M5		10 Hour	2.20		13.12			
	M5-D v	alues are calo	ulated by t	factoring the M!	5-60 value by	71			
							+ + + +		
							+ + + + + + + + + + + + + + + + + + +		
							+ + + + + + + + + + + + + + + + + + +		<u> </u>
	Step 3	Determine	MT-D						
		This is dete	rmined fro	m the relations	hip				
					···r				

	NIC	
	IN D	

Ref

Ref

N	NS MT - D Rainfall (mm)				Pi	oject	:: C	oleg	Gwe	ent Pł	nase	3								Jo	b re	f: 5	2284	425		
		MT - D : all (mm)			P	opos	ed	Deve	lop	ment	Site								Calc	shee	et no	D			re	v
					М	odifie	d F	Ratior	al I	Metho	d										с	of	6	3	0)
					D	rawin	g re	ef.				Са	lc by	/	D	ate			Chec	k by	/		Dat	e		
													S	F		03/ [,]	12/20	24								
						C	Calc	ulatio	ons												С	Jutp	out			
		M	r - I	D = .	Z2 (N	15-D)															-				
		-					70							4												
			Ļ				Z2	valu	les	s for I	Raii	nta		ept	ns											-
M5 Ra	ainfal	(m	<u>m)</u>		M1	M	2	M5)	M10	M	20	M:	30	M50) N	1100									
5					0.62	0.	79	1.0	2	1.19	1.	36	1.4	16	1.56	5	1.79									
10					0.61	0.	79	1.0	3	1.22	1.4	41	1.	55	1.69	9	1.91					<u> </u>				-
15					0.62	0.8	80	1.0	3	1.24	1.4	44	1.5	57	1.70)	1.99									
20					0.64	0.8	81	1.0	3	1.24	1.4	45	1.5	56	1.66	5 2	2.03									
25					0.66	0.8	82	1.0	3	1.24	1.4	44	1.5	54	1.64	1 2	2.01									
30					0.68	0.8	83	1.0	3	1.24	1.4	42	1.5	52	1.61	1	1.97									
40					0.70	0.8	84	1.0	2	1.19	1.3	38	1.4	47	1.56	3	1.89									
50					0.72	0.8	85	1.0	2	1.17	1.3	34	1.4	43	1.52	2	1.81									
75					0.76	0.8	87	1.0	2	1.14	1.	28	1.3	37	1.45	5	1.64									
100					0.78	0.8	88	1.0	2	1.13	1.	25	1.3	33	1.40)	1.54									
150					0.78	0.8	88	1.0	1	1.12	1.:	21	1.2	27	1.33	3	1.45									
200					0.78	0.8	88	1.0	1	1.11	1.	19	1.2	25	1.30)	1.40									

	20	00						0.	78	0.	88	1.	01	1.	11	1.	19	1.	25	1.3	30	1
	Та	ble	A1	Re	lati	ons	hip	be	twe	en	rair	nfall	l of	reti	urn	per	iod	T(I	MT) ar	nd N	/15
	Wa	allin	igfo	rd l	Pro	ced	lure	e Vo	ol 4													

	Та	ble	A1	Re	lati	ons	ship	be	twe	en	rair	nfal	l of	retu	ırn	per	iod	T(I	MT) ar	nd N	/15
	Wa	allin	ngfo	rd	Pro	cec	lure	e Vo	ol 4													

					υ.	10	0.0	00	1.	UΖ	Ι.	13	I.,	20	1.	33	1.4	40	Ι.	54		
					0.	78	0.8	88	1.	01	1.	12	1.	21	1.	27	1.	33	1.	45		
					0.	78	0.8	88	1.	01	1.	11	1.	19	1.	25	1.	30	1.	40		
41	Re	lati	ons	hip	be	twe	en	rair	nfall	l of	reti	urn	per	iod	T(MT) ar	nd N	Л5			
gfo	ord I	Pro	cec	lure	e Vo	ol 4																

													-

100 Year													
	M5 - I	D Ever	nt	M5-D	Z1 va	lues fo	or 100	year e	event	M100 - D) Ev	ent	
				Total]	Total			
				rainfall	Lo	wer	Hig	gher	Interpolated	rainfall		Intens	ity
				mm	mm	Z2	mm	Z2	Z2	mm		mm/h	٦r
	5	Min		5.49	5	1.79	10	1.91	1.80	9.89		118.6	67
	10	Min		9.60	5	1.79	10	1.91	1.90	18.25		109.4	9
	15	Min		10.98	10	1.91	15	1.99	1.93	21.14		84.5	6
	30	Min		14.11	10	1.91	15	1.99	1.98	27.89		55.7	7

ЛТК		Project: Cole	g Gwent	Phase	93			Job ref:	5228425
		Proposed De Modified Pati	velopme	nt Site				Calc sheet no	rev
		Drawing ref		nou	Calch	v	Date	OT Check by	
		Drawing rei.			S	y SF	03/12/2024	Check by	Date
Ref		Calcula	tions					Ou	tput
	1 Hour	19.60	15	1.99	20	2.03	2.03	39.73	39.73
	2 Hour	23.52	20	2.03	25	2.01	2.02	47.42	23.71
	4 Hour	31.36	25	2.01	30	1.97	1.96	61.43	15.36
	6 Hour	35.28	25	2.01	30	1.97	1.93	68.02	11.34
	10 Hour	43.12	30	<u>1.97</u>	40	1.89	1.87	80.42	8.04
20 Voor									
<u> 30 Tear</u>	M5 - D Event	M5-D	Z1 val	ues fo	or 30 v	ear ev	ent	M30 - D) Event
		Total	Low	ver	Hig	iher	Interpolated	Total	
		rainfall						rainfall	Intensity
		mm	mm	Z2	mm	Z2	Z2	mm	mm/hr
	5 Min	5.49	5	1.46	10	1.55	1.47	8.06	96.74
	10 Min	9.60	5	1.46	10	1.55	1.54	14.82	88.91
	15 Min	10.98	10	1.55	15	1.57	1.55	17.06	68.23
	30 Milli	14.11	10	1.55	20	1.57	1.57	22.10	30.60
	2 Hour	23.52	20	1.57	25	1.50	1.50	36.36	18 18
	4 Hour	31.36	25	1.54	30	1.52	1.52	47.51	11.88
	6 Hour	35.28	25	1.54	30	1.52	1.50	52.88	8.81
	10 Hour	43.12	30	1.52	40	1.43	1.40	60.45	6.05
2 Year									
	M5 - D Event	M5-D	Z1 val	ues fo	or 2 ye	ar eve	nt	M2 - D	Event
		rainfall	Low	ver	Hig	her	Interpolated	rainfall	Intensity
	5 Min	mm 5 40	mm	Z2	mm	Z2	Z2	mm 4.24	mm/hr
	5 Min 10 Min	9.60	5	0.79	10	0.79	0.79	4.34	45.52
	15 Min	10.98	10	0.79	15	0.73	0.79	8.69	34 77
	30 Min	14.11	10	0.79	15	0.8	0.80	11.26	22.52
	1 Hour	19.60	15	0.8	20	0.81	0.81	15.86	15.86
	2 Hour	23.52	20	0.81	25	0.82	0.82	19.22	9.61
	4 Hour	31.36	25	0.82	30	0.83	0.83	26.12	6.53
	6 Hour	35.28	25	0.82	30	0.83	0.84	29.67	4.95
	10 Hour	43.12	30	0.83	40	0.84	0.84	36.35	3.64
	Calculation of R	unoff for Site / Cato	hment						
		0n = 2.79 C	· ; ^						
		Qp = 2.78 C							
		Qp = 2.78 C	v Cri	Α					
	C _v =	1.00							
	C _r =	1.3							
	t _c	15	+	As	sume	15min	duration eve	nt appropriate	

ЛТК		ς			Pr	ojec	t: Co	oleg	Gv	vent P	hase	e 3								Job	ref: 5	522842	5	
					Pr	opos	sed	Dev	elo	pment Meth	t Site)							Calc s	heet	no	6	r	ev 0
					Dr	awir	ng re	ef.	nui	Wour	ou	Calc	by		Da	ate			Check	by	01	Date		<u> </u>
							5					-	SF		0	3/12	2/202	24	_	,				
Ref						(Calc	ulati	ion	5	I	1				1				1	Out	put		
													4				6	1						
		NS				84.5 68.2	90 90				IVI M	100 - 20 - 1	15 a 5 an	ppi	opi		e tor	τ _c			—			
						34 7	. <u>.</u> 7				M	2 - 15	app	ron	riat	e fo	or t.	2						
											-										-			
	A	=			2	<mark>540</mark> .	.96		m²		Ca	itchm	ent a	are	a fo	or d	evel	ope	ed site					
		=			1	0.25	54		ha															
			C	ζþ	=				77	.6			l/s	i	10	0 y	ear				_			
									62	.6			l/s	i	30) ye	ar				_			
									31	.9			I/S	i	2	yea	r				—			
																					-			
																					-			
		1 1			1 1							1 1												
	Note t	he ab	ove v	alue	consio	ders	tha	t the	e c	atchn	nent	as 10	00%											
	imper	meab	le. Th	ne va	lue ne	eds	to I	be t	act	ored	by a	n app	propi	riate	e va	alue	e to				_			
	accou			unaci	e type	; T					-			-			1				_			
Def	MaCh		latar (_	TABLE	2 13-3					l					—			
Ret	Table	12 2	ater :	Supp	ly and	Sev	wera	age	_	Runo	ff co	efficier	nts fo	or d	liffe	rent	-				—			
	Runof	f coef	fficient	ts for	differ	ent	area	25	—	areas			LI W		0	111					_			
								10	-	Descrip	otion	of area		11	C	1.10								
									_	Dow	ntow	n area			0.70	0-0.9	5							
										Neig Reside	hborl ntial	urban)	ea		0.50	0-0.7	0							
									_	Sing	le-fan tiunits	nily are , detac	a hed		0.30	0-0.5 0-0.6	50 50 -							
									_	Mult	tiunits	, attacl (surbur	ned ban)		0.60	0-0.7	75 10				_			
									_	Apartr	nent a	areas			0.50	0-0.7	70				_			
									-	Ligh	nt				0.5	8.0-0	30 -				_			
									-	Parks,	ceme	eteries			0.1	0-0.2	25 -							
									-	Playgr	ad ya	s rds			0.2	0-0.4	40							
									_	Unimp	prove	areas		-	0.1	0-0.3	30 -							
	Pre D	evelo	pmer	nt																				
	Perme	eable	Area	=	4	<mark>8.00</mark>)%			U	nim	orove	d ar	eas	s C	=	0.	2	Unde	velop	bed I	and		
																					<u> </u>			
	Imper	meab	le Are	ea =	5	<mark>2.00</mark>)%			A	ll Ru	n-off	<u>C</u> =				1		Aspha	alt R	bad,	existii	ng p	lot
													_								—			
	Runof	f Coe	fficien	t = p	ermea	able	are	ах	С-	⊦ imp	erm	eable	are	a x	C						-			
								<u>u n</u>	Ŭ	mp					Ĭ									
	Selec	ted ru	noff c	oeffic	cient					0.616	5			\square						+	+			\square
								Res	sid	ential	- M	ultiuni	ts, a	itta	che	d								
	Facto	red r	unoff	from	n Site						_													\parallel

ЛТК		V	S						Pro	ojec	et: C	oleę	g G	wen	t Ph	nase	e 3									Jo	b re	f: 5	228 [,]	425		
									Pro	оро	sed	Dev	velo	pm	ent	Site	;								Calc	she	et n	0			re	ev
									Mo	odifi	ed F	Ratio	ona	l Me	etho	d											c	of	6	3	()
									Dra	awii	ng r	əf.		_			Са	lc b	y	_	Da	te			Chec	k by	/		Dat	e		
																		S	SF		0	3/12	2/20	24								
Ref											Calo	cula	tion	S													C	Dutp	out			
					Qr)	=					47	7.8					l/s		10	0 y	ear										
												38	3.6					l/s		30	ye	ar										
												19	9.7					l/s		2 y	/ea	r										
	P	ost	Dev	/elc	opn	ner	nt																									
	Pe	erm	eab	le A	٩rea	a =									Un	im	orov	ved	are	eas	C :	=	0	.2	Unde	evel	оре	ed L	and	k		
	In	nper	me	able	e A	rea	=								All	Ru	n-o	off C) =					1	Asph	alt	Roa	ad,	exis	sting	g pl	ot
																									-							
	R	uno	ff C	oef	ficie	ent	= p	ern	nea	ble	are	a x	С	+ ir	npe	erm	eab	le a	area	аx	С											
	Se	elec	ted	run	off	co	effic	cier	nt						0																	
	Fa	acto	ored	l ru	no	ff fi	rom	ו Si	te																							
					Qp)	=					0	.0					l/s		10	0 y	ear										
												0	.0					l/s		30	ye	ar										
												0	.0					l/s		2 y	/ea	r										
																															L	
			1																													
			1																													
			1																													
			1																													

ЛТИ		N							Pro	ojec	t: Co	leg	g Gv	ven	t Pł	nase	e 4									Jo	b re	f: 5	228	425		
									Pro	าทกา	sed [Эел	velo	nm	ent	Site	<u>`</u>								Calc	she	et n				re	
									Ma	opu.		otic	anal	Ma	ont	- Onc									Calc	3110	CUIN	ر د		~	10	v م
												au(•	Jilai	IVIC	-unc	u	<u> </u>	la hi			De	to			Chao	l h	, (<u>)</u>	,) to		<u> </u>
									Dra	awir	ng re	Ι.					Ca	מ טו	y F		Da			~ 1	Cnec	кр	/		Da	le		
	1																	S	F		0.	3/12	2/20	24					L			
Ref										(Calcu	ulat	tion	s													C	Jutp	out			
																													Ŀ			
		ne	MC	Ddifi	ed I	kat	ion		viet	no	d																		Inp	out		<u> </u>
Ref	V	Vall	ing	fora	Pro	ced	dure	; - I	/ol	4 -	The	Μ	odif	ied	Ra	atio	nal	met	tho	d									Ca	lc		<u> </u>
	T	he	Ra	tion	al Fo	orm	ula			Qr	o = C	; i	A															<u> </u>	Lin	kec	k	
	G)p =	= F	Peak	Dis	cha	arge	e (I/	s)																				-			-
	С	; =	E	Dime	ensio	onle	ess	Coe	effi	cier	nt																					
	i	=	A	Ver	ade	Ra	infa	ll Ir	nter	nsitv	v dur	ind	a tir	ne	of (Con	cer	ntrat	tion	(m	m/	hοι	ir)									
	А	. =	C	Cont	ribut	ind	Са	tch	me	ent A	, Area	(h	, а)								-		Ĺ									
												(.,																			
	14	the			(A) :					ing L					+h			lint			(:)								<u> </u>			
	ıر س	nm/	+ A hr	the	equ	s e atio	xpre on b	eco	ed ome	ni F ƏS	IECIS	are	s a	nd	ulê	ral	ma	n (U)	reu;	ыцу	(1)	1(1				-		-	-			
										Qr	o = 2	.78	8 C	i A	\ 														<u> </u>	\square		
																													-	$\left - \right $		
	С	; = (C.,	C⊳			C,	а =	rop	orti	ion c	of r	aint	fall	on	cat	chr	nen	t w	hicl	า	1	1					-				
			Ť				ap	, pea	ars	as s	surfa	ace	e ru	nof	f in	sto	rm	dra	ina	ae	svs	ten	n =						-		-	-
							av	' era	ge	0.7	5 (0.	6 i	n ra	apio	dly (drai	nin	g so	oils	& ().9	in							-			-
							he	avy	v so	ils)	`			'	,			0						-					-	$\left - \right $		
					_		Co	= (con	sta	nt va	alua	e of	1	30														-			
							UR N					ii ci																				
	C	; _v =			1.00																											
	C	; _R =	:		1.3																											
	0) =		-	1.3																											
	A	ppl	yin	g th	e dir	ner	nsio	nle	SS	coe	efficie	ent	usi	ing	the	e pa	ran	nete	ers	abo	ove	giv	es									ĺ
	a	re	/ise	ed e	quat	ion	of:																									
										Qr	o = 2	.7 [.]	1 i	Α																		l
																			-										<u> </u>	\square	-	
																												<u> </u>	+	$\left - \right $		
			+	+	-	\vdash	-	-					-			-	\vdash							-		-		+	+			-
			+	+									-				-											-	+			
		_	_	+		-			-						-		-						-				-	<u> </u>	⊢	$\mid \mid \mid$		
				+		-																					+	-	+			
																													<u> </u>			
		_	_	+	_	-		-			+		-				-							-		-	-	┣─	⊢	$\mid \mid \mid$		
	Т	im	- 0 e	f Co	nce	ntr	atio	on (l (Tc)							\vdash	-										\vdash	+			

ЛТК			ς					Pro	oject:	Col	eg	Gwe	ent	Phas	se 4									Jot	o ref:	: 52	28425	5	
								Pro Mo	pose difie	ed D d Ra	eve	elopr nal N	ne /let	nt Sit	e							(Calc sh	nee	et no of		6	re (ev)
								Dra	awing	g ref					Ca	alc b S	y SF		Dat 03	te 8/12	/2024	(Check	by			Date		
Ref								<u>.</u>	С	alcu	lati	ons													Οι	utpu	ut		
									1	lc =	te ·	+ tf																	
	tc :	=		Tin	ne of	Cor	ncer	ntra	tion		_																		
	te :	=		l in	ne of	Ent	ry -	rep	rese	nts	de	lay 8	<u>x</u> a	atten	Jatio	on c	of flo) W (ove	r gr	ound	ิรเ	urface						
	lf =	-		IIn	ne or		w th	rou	gn p	ipe	sys	sterr	1 10	o poi	nt u	nae	r cc	nsi	aer	atio	n								
	Th	e W	/alli	inat	ord F	Proc	edu	re v	voule	d re	noo	mme	enc	d the	foll	owi	na t	- V2	alue	s.									
	 			ingi																.0.									
	Re	turi	n Pe	eric	d	t _e	(m	ins)			1	Use	lo	nger	time	es c	of er	ntry	at										
	5 y	/rs				3	- 6				(each	n re	eturn	per	iod	for	lar	ge f	lat									
	2 y	/rs				4	- 7				:	subc	cat	chm	ents	i (ar	ea	> 4	00n	n²,									
	1 չ	/r				4	- 8				:	slop	e <	<1:50))														
	1 r	nth				5	- 10																						
												Use	sn	nalle	r va	lues	s foi	sn	nall										
												stee	p s		atch	me	nts	(are	ea										
												<200	Jm	I⁻, SIC	ppe	>1:	30)												
																						_							
						_																							
	t.	=		1	0	m	ins																						
	 t _e =	=			5	m	ins																						
	t _c =	=		1	5	m	ins		assu	me ´	l5m	nin ev	'en	t is ap	prop	riate	des	ign (ever	nt - s	ee pg	5							
																		-				T							
						_				_																_			
							-	-		_			_	_	_	-	-					+			-+	-		-	
		\vdash				-				+	+	_	+	+	-		-				_	+		_	-+	-		-	
		\vdash							\vdash	+					_							╉				-		-	
		\vdash							\vdash	+				+								╉			+	+	_	\vdash	
						+			\vdash	+			+	+								╉			+	\neg			
										+												╉			-+	\neg			
										\uparrow												╡			+	1			
																	L					Ţ			_				
	 																					1							
																										\square			
	_												_									\downarrow				_			
	As	ses	sm	nen	t of F	kain	tall	Int	ensi	ty	+		_									+				-		-	
	64		•		Deta	rmi		15 4	S0 m	in r	ain	fall	- n	d tha		ffic	ient	r f.	or ti	he		╀		_		-		-	
	ত	ep '	I		Dere			10-0			aii i	iall à			UUE	SHIC	ner II	. 1 10	ווינ	16									

ЛТК			Project: Col	eg Gwent Phase	e 4		Job ref: {	5228425
			Proposed D	evelopment Site	2		Calc sheet no	rev
			Modified Ra	tional Method			odio official	6 0
) ata	OI Chaok by	
			Drawing rei				Check by	Date
					SF	03/12/2024		
Ref			Calcu	lations			Out	put
		site from th	ie mapping ir	ncluded in the V	Wallingford Pro	ocedure		
		M5 - 60mir	is = 5 vear r	eturn period an	d 60 minute di	iration		
		rainfall den	th - Use M5-	60 Man				
		M5-60 min	Rainfall	<mark>19.6</mark>	(mm - Tota	al rainfall)		
		r = ratio of	5yr - 60min o	duration and 5	yr - 2 day durai	tion		
		rainfall dep	th - Use r ma	ар	-			
				0.247				
		1		0.247				
	Step 2	Determine	rainfall depth	is for 5 year re	turn period for	all		
		required re	turn periods,	D = M5 - D				
		Using the r	value above	m the				
		graph in the	e Wallingford	I procedure (Fi	g A.3a)			
			0.247					
		1 -	0.247					
	Return	Period D	uration (D)	Z1	M5-D (I	nm total)		
	M5		5 Min	0.28	5.	49		
	M5		10 Min	0.49	9.	60		
	M5		15 Min	0.56	10	98		
	M5		30 Min	0.72	14	11		
	1013		<u>4</u>	1.00	14			
	1015			1.00	19	.00		
	M5		2 Hour	1.20	23	.52	+ + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$
	M5		4 Hour	1.60	31	.36		
	M5		6 Hour	1.80	35	.28		
	M5		10 Hour	2.20	43	.12		
	M5-D v	alues are cal	culated by fai	ctorina the M5-	-60 value hv 71	1		
							\mathbf{H}	+ $+$ $+$ $+$ $+$
	Step 3	Determine	MT-D					
							1	
		This is dete	ermined from	the relationsh	ip			
					• • • • •	I	• • • • •	

ЛТК			C						Pro	ojec	t: C	oleç	g G\	wen	t Ph	ase	e 4								Joł	ז re	f: 5	228	425		
		N	9						Pro	pos	sed	Dev	/elo	pm	ent	Site	;							Calc s	shee	et no)))			re	;v
									Dra			\au	Ла		uno	u	Ca	lc by			to			Check	k by		<u>л</u>	, בח			
										avvii	ig it	51.					Ua	SF		0	3/12/	202	4	oncor	СБУ			Da			
Ref										(Calo	cula	tion	s												C	Jutp	out			
					847			70	/84	6 D																					
					IVI	-	= ט 	22		5-D	') 																				
											Z2	Va	lue	es f	or F	Rai	nfa	II De	pth	5											
	M	5 R	aint	fall	(m	m)		N	11	N	12	N	15	Μ	10	Μ	20	M3(/150	M1	00									
		5						0.	62	0.	79	1.	02	1.	19	1.	36	1.46	5 1	.56	1.7	'9 						<u> </u>			
		10						0.	61	0.	79 00	1.	03	1.	22	1.	41	1.55	5 1 7 4	.69	1.9	91					-	<u> </u>	\vdash		
		15						0.	62	0.	80	1.	03	1.	24	1.	44	1.5		.70	1.9	99			$\mid \mid \mid$						
	4	20						0.	64 66	0.	81 00	1.	03	1.	24	1.	45	1.50	1 1	.00	2.0	13							<u> </u>		
		20	-	_	-	-	-	0.	00 69	0.	02 82	I. 1	03 02	I. 1	∠4 24	1.	44 10	1.54	+ 1 > 4	.04	2.0	7	_		$\left - \right $		<u> </u>	⊢	\vdash		
		10				-	-	0.	00 70	0.	03 81	1. 1	03 02	1.	∠4 10	1.	+∠ ૨૦	1.54	- 7 1	.01	1.8	20			$\left - \right $		-	\vdash	\vdash		
		+0 50	+	-	-			0. 0	72	0.	85	1. 1	02 02	1. 1	17	1. 1	34	1.47 1.47	ן ו א 1	.50	1.0	31	_		$\left - \right $		-	-	\vdash		
	-	75						0.	76	0.	87	1.	02	1.	14	1.	28	1 37	7 1	.52	1.0	34			$\left \right $						
	1	00						0.	78	0.	88	1.	02	1.	13	1.	25	1.33	3 1	40	1.0	54									
	1	50						0.	78	0.	88	1.	02	1.	12	1.	20	1.00	7 1	.40	1.0	15									
	2	00						0.	78	0.	88	1.	01	1.	11	1.	19	1.25	5 1	.30	1.4	10				·					
																			-												
	Ta	able	A1	Re	elati	ons	ship	be	twe	en	rair	nfal	l of	ret	urn	pei	riod	T(M	T) a	ind I	M5										
Ref	W	allir	ngfo	ord	Pro	ceo	dure	e Vo	5 4																						
																									$\left - \right $		-	<u> </u>	\vdash		
																				-					$\left - \right $						
																										·					
																													\square		
																													\square		
																				_		_			\square		<u> </u>	<u> </u>	\square		
100 1/2	_			<u> </u>	<u> </u>				<u> </u>		<u> </u>	<u> </u>									+	_			\parallel		<u> </u>	╞	\vdash		
<u>100 Year</u>	NA	5						N	15 1				74			_ f	4	00.14			-				NA 4	00					
		ວ- 		ver	11			N	Tota	al			21	va	iue	510	or 1	00 y	ear	eve	11		_		T 1911	ota	ם - גו		rent		
								ra	ainfa	all				Lo	wer	<u> </u>		High	er	Int	terpo	late	ed		ra	infa	all		Inte	ens	ity
		_				1			mm	۱ 			mr	n -	Z	2	mr	n	Z2		Z	2		-	1	nm	1	<u> </u>	m	m/ł	۱r
	_	5	Mi	n	-		-		5	.49		-		5	1.	79	1	0 1	1.91		1.8	30			ę).89)	<u> </u>	11	8.6	67 10
		10	Mi	n	<u> </u>				9	.60		<u> </u>		0	1.	79	1		1.91		1.9	0			1	8.2	5	╞	10	19.4	.y
		15	Mi	n			1		10	.98			1	0	1.	91	1	5 1	1.99		1.9	13			2	1.1	4	1	8	4.5	0

15

1.99

1.98

10

1.91

30

Min

14.11

27.89

55.77

ЛТК		Project: Cole	g Gwent Phase	e 4		Job ref: 522	28425
		Proposed De	velopment Site	9		Calc sheet no	rev
			onal Method	O a la hai	Data	Oh a shahara	<u>6</u> 0
		Drawing ref.		Calc by SF	Date 03/12/2024	Спеск by L	Jate
Ref		Calcula	tions			Outpu	t
	1 Hour	19.60	15 1.99	20 2.03	2.03	39.73	39.73
	2 Hour	23.52	20 2.03	25 2.01	2.02	47.42	23.71
	4 Hour	31.36	25 2.01	30 1.97	1.96	61.43	15.36
	6 Hour	35.28	25 2.01 30 1.97	30 1.97 40 1.89	1.93	68.02 80.42	11.34 8.04
					1.07		
<u> 30 Year</u>							
	M5 - D Event	M5-D	Z1 values for	or 30 year ev	vent	M30 - D E	vent
		I otal	Lower	Higner	Interpolated	l otal rainfall	Intensity
		mm	mm Z2	mm Z2	Z2	mm	mm/hr
	5 Min	5.49	5 1.46	10 1.55	1.47	8.06	96.74
	10 Min	9.60	5 1.46	10 1.55	1.54	14.82	88.91
	15 Min	10.98	10 1.55	15 1.57	1.55	17.06	68.23
	30 Min	14.11	10 1.55	15 1.57	1.57	22.10	44.20
	1 Hour	19.60	15 1.5 <i>1</i>	20 1.56	1.56	30.60	30.60
	2 Hour	23.52	20 1.50	20 1.04 30 1.52	1.55	30.30 47.51	10.10
	6 Hour	35.28	25 1.54	30 1.52	1.50	52.88	8.81
	10 Hour	43.12	30 1.52	40 1.43	1.40	60.45	6.05
<u>2 Year</u>							
	M5 - D Event	M5-D	Z1 values for	or 2 year eve	ent	M2 - D Ev	ent
			Lower 70	Higher	Interpolated	rainfall	
	5 Min	5 /9	mm 22	10 0 70	22 0.70	mm 4 34	52 03
	10 Min	9.60	5 0.79	10 0.79	0.79	7.59	45.52
	15 Min	10.98	10 0.79	15 0.8	0.79	8.69	34.77
	30 Min	14.11	10 0.79	15 0.8	0.80	11.26	22.52
	1 Hour	19.60	15 0.8	20 0.81	0.81	15.86	15.86
	2 Hour	23.52	20 0.81	25 0.82	0.82	19.22	9.61
	4 Hour	31.36	25 0.82	30 0.83	0.83	26.12	6.53
	10 Hour	43 12	30 0.83	40 0.83	0.84	36.35	4.95
					0.04		
	Calculation of Ru	unoff for Site / Cato	:hment				
		Qp = 2.78 C	I A				
		Qp = 2.78 C	v CriA				
	C _v =	1.00					
	C _r =	1.3					
		15	Δ.	sume 15min	duration eve	nt appropriate	
	°C	10	1 73			in appropriate	

ЛТК		ς				Pro	ject:	Cole	eg G	went	Phas	e 4								Job	ref: 5	52284	125		
						Pro	pos	ed De	evelo	pmer	nt Site	Э							Calc s	heet	no	6	,	re	/
						Dra	awind	g ref.	lona	i wicu	lou	Calc	; by		D	ate			Check	(by	01	Dat	e	0	
								5					SF		(03/1	2/202	24	-	,					
Ref		1		1			С	alcula	ation	IS				1							Out	put		ľ	
												100	45												
		=	-			8	4.50	2			M	$\frac{100}{30} - \frac{1}{30}$	15 2	app	orop	iate	for t	τ _c							
						3	4 77	, 7			M	2 - 15	5 an	pro	opin	ite f	or t.	с							
] [- 40				- _C								
	A	=				7:	355.	1	m²	2	Ca	atchn	nen	t are	ea f	or d	evel	ope	ed site	•			_		
		=				0	.736	3	ha	ı															
				Qp	=				22	4.9			l/	/s	1	00 y	/ear								
									18	1.5			1/	/s	3	0 ує	ear								
									92	2.5			1/	/s	2	yea	ar								
																							_		
						_																	_		
																							_		
	Note	the a	bove	valu	e co	nsid	ers	that t	the c	catch	ment	t as 1	009	%											
	imper	meat	ole.	The ۱	/alue	e nee	eds	to be	e fac	tored	by a	an ap	pro	priat	te v	alue	e to								
	accou	int to	r the	surra	ace t	ype			1	1 1	- 1	T T				-1									
. (LL.								TADI	E 12														
Ref	McGr	12 2	Vate	r Sup	ply a	and	Sew	/erag	le	Run	off co	efficie	ents	for	diff	eren	t -						_		
	Runo	IJ-J ff coe	fficie	nte f	or di	fforc	nt a	reas		area	\$3		1010	1111	100	10.11	-								
									·	Descr	iption	of area	-	1.1	C	1.1	-								
										Busin	ess wntow	n area			0.7	70-0.9	95						_		
										Ne	ighbor ential	hood a (urban	rea)		0.5	50-0.	70								
										Sin	gle-far	nily ar s, deta	ea ched		0.3	30-0.1 40-0.0	50 60								
									_	Mu Resid	ltiunit lential	s, attac	ched	,	0.0	50-0. 25-0.	75 40								
									_	Apar	tment	areas	, oun		0.5	50-0.	70								
									_	Lig	striat				0.5	50-0.	80								
										Parks	avy s, cem	eteries			0.0	10-0.	25						_		
									-	Play	oad ya	s ards			0.1	20–0. 20–0.	35 40						_		
										Unin	prove	d areas	s	-	0.	10-0.	30								
	Pre D	evel	opm	ent																					
	Perm	eable	Are	a =		35	5.00 [°]	<mark>%</mark>		ι	Jnim	prove	ed a	area	s C	=	0.	2	Unde	velo	ped	Land	1		
																		-							
	Imper	meal	ble A	rea =	-	65	5.00 [°]	<mark>%</mark>		ŀ	All Ru	un-off	t C :	=			1		Aspha	alt R	load,	exis	ting) plc	ot
																							_		
	Runo	ff Coe	efficie	ent =	perr	mea	ble a	area	x C	+ im	herm	eable	e ar	eax	(C										-
									<u> </u>																
	Selec	ted ru	unoff	coef	ficie	nt				0.7	2												\uparrow	+	
								R	esid	lentia	I - M	ultiur	nits,	atta	ach	ed									
	Facto	red I	runo	ff fro	om S	ite																	\square		

ΛТК			S						Pro	ojec	:t: C	oleg	g Gv	wen	t Pł	nase	94									Jo	b re	f: 5	228	425	1	
									Pro	оро	sed	Dev	velo	pm	ent	Site	•								Calc	she	et no	C			re	ev.
									Mc	odifi	ed F	Ratio	ona	l Me	etho	d											c	of	(6	()
									Dr	awiı	ng r	əf.					Ca	lc b	у		Da	te			Chec	k by	/		Da	te		
																		S	SF		03	3/12	/20	24								
Ref											Calo	cula	tion	IS							•						C	Dutp	out			
					Qr)	=					16	1.9					l/s		10	0 ye	ear										
												13	0.7					l/s		30	vea	ar					1					
												66	5.6					l/s		2 \	/eai	r										
																				<u> </u>												
	P	ost	Dev	/elc	nn	ner	nt																									
	P/	ərm	eah	le 4	Are:	a =				-					Un	im	nn	/ed	are	225	C =	=	0	2	Unde	vel	one	dI	and	4		-
																				1	Ŭ			. 2	onac					4		-
	In	nei	me	able	Δ	rea	=									Ru	n-0	ff C) =					1	Asnh	alt	Roa	he	exis	tin	n n	ot
		ipei								Γ					7 (11	T CO									7 top1			10,			9 19	
																																<u> </u>
	R	uno	ff C	oef	ficie	-nt	= n	ern	าคล	hle	are	a x	C.	+ ir	nne	rm	ah	le a	area	ax	C											-
							۲ 								npe		Jub				Ŭ											-
	Se	elec	ted	run	off	CO	effi	cier	nt						0																	
	Fa	acto	ored	l ru	no	ff fı	ron	ו Si	te																							
					Qp)	=					0	.0					l/s		10	0 ye	ear										
												0	.0					l/s		30	yea	ar							r			
												0	.0		1			l/s		2 y	/eai	r										
																																[
																																[

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

-				www.uksuus	.com Greenneid rund
Calculated by:	Suzy Face	Эу		Site Details	
Site name:	Phase 2 (Crosskey	Coleg Gwent, s Campus		Latitude:	51.61857° N
Site location:	Crosskey	s		Longitude:	3.12272° W
This is an estimation criteria in line with Er developments", SCOS standards for SuDS (for setting consents	n of the greer nvironment A 30219 (2013) , Defra, 2015). s for the drair	field runoff rat gency guidance the SuDS Manu This informatio lage of surface	es that are used to m e "Rainfall runoff man al C753 (Ciria, 2015) ar n on greenfield runof water runoff from sit	neet normal best practice Reference: agement for nd the non-statutory f rates may be the basis tes. Date:	2675060842 Dec 04 2024 15:13
Runoff estii approach	mation		FEH Statistical		
Site charac	teristic	S		Notes	
īotal site area (h	a): ^{0.28}			(1) Is O _{BAR} < 2.0 l/s/ha?	
Methodolog	gy				
_{MED} estimation r	method:	Calculate fro	om BFI and SAAR	When Q _{BAR} is < 2.0 l/s/ha then lin	niting discharge
BFI and SPR meth	od:	Specify BFI n	nanually	rates are set at 2.0 l/s/ha.	
lOST class:		N/A			
8FI / BFIHOST:		00.639		(2) Are flow rates < 5.0 l/s	s?
Q _{MED} (I/s):				Where flow rates are less than { for discharge is usually set at 5.	5.0 l/s consent 0 l/s if blockage
Q _{BAR} / Q _{MED} factor	r.	1.08		from vegetation and other mate	erials is possible.
Hydrologica Characteris	al stics	Default	Edited	Lower consent flow rates may b blockage risk is addressed by us	e set where the sing appropriate
SAAR (mm):		1317	1317	drainage elements.	
lydrological regi	on:	9	9	(3) IS SPB/SPBHOST < 0.32	
Growth curve fac	tor 1 year:	0.88	0.88		
Growth curve fac vears:	tor 30	1.78	1.78	Where groundwater levels are lo use of soakaways to avoid disch	ow enough the narge offsite
Growth curve fac /ears:	tor 100	2.18	2.18	would normally be preferred for surface water runoff.	disposal of
Growth curve fac Jears:	ctor 200	2.46	2.46		

Greenfield runoff rates

Edited

Q _{BAR} (I/s):	1.9	
1 in 1 year (l/s):	1.67	
1 in 30 years (I/s):	3.38	
1 in 100 year (l/s):	4.14	
1 in 200 years (l/s):	4.68	

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

					s.com a reenheid run
alculated by:	Suzy Fac	ey		Site Details	
lite name:	Phase 3 Crosske	Coleg Gwent, ys Campus		Latitude:	51.61857° N
ite location:	Crosske	ys		Longitude:	3.12272° W
his is an estimatior riteria in line with E evelopments", SC0 tandards for SuDS (or setting consents	n of the gree Invironment / 30219 (2013) (Defra, 2015). s for the drai	nfield runoff rat Agency guidance , the SuDS Manu This information nage of surface	es that are used to r e "Rainfall runoff mar al C753 (Ciria, 2015) a n on greenfield runof water runoff from si	neet normal best practice Reference: nagement for nd the non-statutory ff rates may be the basis Date: ites.	2372613877 Dec 04 2024 15:08
unoff esti Ipproach	mation		FEH Statistical		
ite charac	teristic	CS		Notes	
otal site area (h	a): ^{0.25}			(1) Is 0 _{₽∧₽} < 2.0 I/s/ha?	
/lethodolog	gy				
_{MED} estimation i	method:	Calculate fro	om BFI and SAAR	When Q _{BAR} is < 2.0 l/s/ha then lir	niting discharge
Fl and SPR meth	nod:	Specify BFI m	nanually	rates are set at 2.0 l/s/ha.	
OST class:		N/A			
fi / BFihost:		00.639		(2) Are flow rates < 5.0 l/s	s?
_{MED} (I/s):				Where flow rates are less than	5.0 l/s consent
_{BAR} / Q _{MED} facto	r.	1.08		from vegetation and other mate	erials is possible.
lydrologica characteris	al stics	Default	Edited	Lower consent flow rates may be blockage risk is addressed by u drainage elements	be set where the sing appropriate
AAR (mm):		1317	1317		
ydrological regi	on:	9	9	(3) IS SPR/SPRHOST < 0.32	
rowth curve fac	ctor 1 year:	0.88	0.88		
rowth curve fac ears:	ctor 30	1.78	1.78	Where groundwater levels are louse of soakaways to avoid discl	ow enough the narge offsite
rowth curve fac ears:	ctor 100	2.18	2.18	would normally be preferred for surface water runoff.	disposal of
rowth curve fac ears:	ctor 200	2.46	2.46		

Greenfield runoff rates

Edited

Q _{BAR} (I/s):	1.7	
1 in 1 year (l/s):	1.49	
1 in 30 years (I/s):	3.02	
1 in 100 year (l/s):	3.7	
1 in 200 years (l/s):	4.18	

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

				www.uksuus.	com a reenneid run
Calculated by:	Suzy Fac	ey		Site Details	
Site name:	Phase 4 Crosske	Coleg Gwent, ys Campus		Latitude:	51.61857° N
Site location:	Crosske	ys		Longitude:	3.12272° W
This is an estimation priteria in line with E developments", SCO standards for SuDS for setting consent	n of the gree Environment 30219 (2013) (Defra, 2015) s for the drai	nfield runoff rat Agency guidance , the SuDS Manu . This information nage of surface	es that are used to n e "Rainfall runoff man al C753 (Ciria, 2015) ar n on greenfield runof water runoff from si	neet normal best practice Reference: agement for nd the non-statutory f rates may be the basis Date:	3102889182 Dec 04 2024 15:1
Runoff esti approach	mation		FEH Statistical		
Site charac	cteristi	CS		Notes	
otal site area (h	n a): ^{0.75}			(1) Is $\Omega_{RAD} < 2.0 \text{J/s/ha}$?	
Methodolo	gy				
Q _{MED} estimation	method:	Calculate fro	om BFI and SAAR	When Q _{BAR} is < 2.0 l/s/ha then lim	iting discharge
FI and SPR meth	nod:	Specify BFI m	nanually	rates are set at 2.0 l/s/ha.	
IOST class:		N/A			
8FI / BFIHOST:		00.639		(2) Are flow rates < 5.0 l/s	?
⊋ _{MED} (I∕s):	_			Where flow rates are less than 5	.0 l/s consent
Q _{BAR} / Q _{MED} facto	r.	1.08		for discharge is usually set at 5.0	rials is possible.
Hydrologica	al			Lower consent flow rates may be	e set where the
characteris	stics	Default	t Edited	drainage elements.	
SAAR (mm):		1317	1317		
lydrological reg	ion:	9	9	(3) IS SPR/SPRHOST < 0.32	
Growth curve fac	ctor 1 year:	0.88	0.88		
Growth curve fac vears:	ctor 30	1.78	1.78	Where groundwater levels are lo use of soakaways to avoid disch	w enough the arge offsite
Frowth curve faction for the second sec	ctor 100	2.18	2.18	would normally be preferred for	disposal of
Frowth curve fac	ctor 200	2.46	2.46		

Greenfield runoff rates

Edited

Q _{BAR} (I/s):	5.09	
1 in 1 year (l/s):	4.48	
1 in 30 years (I/s):	9.06	
1 in 100 year (l/s):	11.1	
1 in 200 years (l/s):	12.53	

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Appendix C. Storage Estimate Calculations

Storage estimate Phase 2

- 1. Discharge rate = 1.67 l/s
- 2. Total Area = 2762.6 m2

🕓 Quick Storage Es	🐶 Quick Storage Estimate				
	Input				
	Input Type	User Input ~			
	Area (ha)	0.28			
	Volumetric Runoff Coefficient	1.000			
	Discharge Rate (L/s)	1.67			
	Infiltration Rate (m/hr)	0.0			
	Safety Factor	2.0			
		Quick V Calculate			
	◯ Create New ○ From Library				
	✓ AII ✓ FEH				

×

Quick Storage Estimate

 Results

 Quick Storage Estimate variables require approximate storage of between 233m³ - 319m³.

 These values are estimates only and should not be used for final design purposes.

Storage estimate Phase 3

- 1. Discharge rate = 1.49 l/s
- 2. Total Area = 2540.9 m2

🕓 Quick Storage	Estimate		×
	Input		
	Input Type	User Input v	
	Area (ha)	0.25	
	Volumetric Runoff Coefficient	1.000	
	Discharge Rate (L/s)	1.49	
	Infiltration Rate (m/hr)	0.0	
	Safety Factor	2.0	
i		Quick V Calculate	
	 ✓ Create New ✓ Prom L ✓ All ✓ FEH 	all and the second seco	
時 Quick Storage	Estimate		\times
	Results		
	Quick Storage Estimate varial between 208m ³ - 285m ³ .		
	These values are estimates or design purposes.	nly and should not be used for final	
1			

Storage estimate Phase 4

These values are estimates only and should not be used for final design purposes.

- 1. Discharge rate = 4.48 l/s
- 2. Total Area = 7358.5 m2

💵 Quick Storage Estimate			×
Input			
Input Type	User Input ~		
Area (ha)	0.736		
Volumetric Runoff Coefficient	1.000		
Discharge Rate (L/s)	4.48		
Infiltration Rate (m/hr)	0.0		
Safety Factor	2.0		
	Quick ~ Calculate		
◯ Create New ○ From	Library		
 ✓ AII ✓ FEH 	▲		
Regional Contraction Contractico Contracti			×
Results			
Quick Storage Estimate vari between 607m³ - 837m³.	ables require approximate storage of		

Appendix D. Drainage Layout Plan

AtkinsRéalis

Suzy Facey AtkinsRéalis UK Limited 2 Capital Quarter Floor 2 Tyndall Street Cardiff CF10 4BZ

Tel: +44 (0)29 2048 5159

© AtkinsRéalis UK Limited except where stated otherwise

AtkinsRéalis - Baseline / Référence